The growing demands of vehicular network applications,which have diverse networking and multimedia capabilities that passengers use while traveling,cause an overload of cellular networks.This scenario affects the qual...The growing demands of vehicular network applications,which have diverse networking and multimedia capabilities that passengers use while traveling,cause an overload of cellular networks.This scenario affects the quality of service(QoS)of vehicle and non-vehicle users.Nowadays,wireless fidelity access points Wi-Fi access point(AP)and fourth generation long-term evolution advanced(4G LTE-A)networks are broadly accessible.Wi-Fi APs can be utilized by vehicle users to stabilize 4G LTE-A networks.However,utilizing the opportunistic Wi-Fi APs to offload the 4G LTE-A networks in a vehicular ad hoc network environment is a relatively difficult task.This condition is due to the short coverage of Wi-Fi APs and weak deployment strategies of APs.Many studies have proposed that offloading mechanisms depend on the historical Wi-Fi connection patterns observed by an interest vehicle in making an offloading decision.However,depending solely on the historical connection patterns affects the prediction accuracy and offloading ratio of most existing mechanisms even when AP location information is available.The present study proposed a multi-criteria wireless availability prediction(MWAP)mechanism,which utilizes historical connection patterns,historical data rate information,and vehicular trajectory computation to predict the next available AP and its expected data capacity in making offloading decisions.The proposed mechanism is decentralized,where each vehicle makes the prediction by itself.This characteristic helps the vehicle users make a proactive offloading decision that maintains the QoS for different applications.A simulation utilizing MATLAB was conducted to evaluate the performance of the proposed mechanism and benchmark it with related state-of-the-art mechanisms.A comparison was made based on the prediction error and offloading ratio of the proposed mechanism in several scenarios.The MWAP mechanism exhibited a lower prediction error(i.e.,below 20%)and higher offloading ratio(i.e.,above 90%)than the existing mechanisms for several tested scenarios.展开更多
针对同步多链路Wi-Fi网络资源分配复杂度高并且难以同时优化系统吞吐量和传输时延以提升网络性能的问题,提出了一种基于双重深度Q网络(double deep Q network,DDQN)的Wi-Fi网络同步多链路资源分配和优化算法。将各个链路信道划分为多种...针对同步多链路Wi-Fi网络资源分配复杂度高并且难以同时优化系统吞吐量和传输时延以提升网络性能的问题,提出了一种基于双重深度Q网络(double deep Q network,DDQN)的Wi-Fi网络同步多链路资源分配和优化算法。将各个链路信道划分为多种不同规格的资源块(resource unit,RU)组合,利用DDQN进行RU组合选取,结合KM(Kuhn-Munkres)算法为设备分配RU,从而降低资源分配复杂度;针对网络性能提升问题,将满意度定义为吞吐量和时延的函数,联合优化资源分配和传输时长,以提升满意度,从而提升系统吞吐量、降低传输时延。在饱和业务流量及低负载流量模型下进行仿真分析,结果表明,所提算法具有较好的收敛性能,并且在提升满意度和系统吞吐量、降低传输时延方面优于对比算法。展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer t...In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer task offloading.For many resource-constrained devices,the computation of many types of tasks is not feasible because they cannot support such computations as they do not have enough available memory and processing capacity.In this scenario,it is worth considering transferring these tasks to resource-rich platforms,such as Edge Data Centers or remote cloud servers.For different reasons,it is more exciting and appropriate to download various tasks to specific download destinations depending on the properties and state of the environment and the nature of the functions.At the same time,establishing an optimal offloading policy,which ensures that all tasks are executed within the required latency and avoids excessive workload on specific computing centers is not easy.This study presents two alternatives to solve the offloading decision paradigm by introducing two well-known algorithms,Graph Neural Networks(GNN)and Deep Q-Network(DQN).It applies the alternatives on a well-known Edge Computing simulator called PureEdgeSimand compares them with the two defaultmethods,Trade-Off and Round Robin.Experiments showed that variants offer a slight improvement in task success rate and workload distribution.In terms of energy efficiency,they provided similar results.Finally,the success rates of different computing centers are tested,and the lack of capacity of remote cloud servers to respond to applications in real-time is demonstrated.These novel ways of finding a download strategy in a local networking environment are unique as they emulate the state and structure of the environment innovatively,considering the quality of its connections and constant updates.The download score defined in this research is a crucial feature for determining the quality of a download path in the GNN training process and has not previously been proposed.Simultaneously,the suitability of Reinforcement Learning(RL)techniques is demonstrated due to the dynamism of the network environment,considering all the key factors that affect the decision to offload a given task,including the actual state of all devices.展开更多
基金This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘The growing demands of vehicular network applications,which have diverse networking and multimedia capabilities that passengers use while traveling,cause an overload of cellular networks.This scenario affects the quality of service(QoS)of vehicle and non-vehicle users.Nowadays,wireless fidelity access points Wi-Fi access point(AP)and fourth generation long-term evolution advanced(4G LTE-A)networks are broadly accessible.Wi-Fi APs can be utilized by vehicle users to stabilize 4G LTE-A networks.However,utilizing the opportunistic Wi-Fi APs to offload the 4G LTE-A networks in a vehicular ad hoc network environment is a relatively difficult task.This condition is due to the short coverage of Wi-Fi APs and weak deployment strategies of APs.Many studies have proposed that offloading mechanisms depend on the historical Wi-Fi connection patterns observed by an interest vehicle in making an offloading decision.However,depending solely on the historical connection patterns affects the prediction accuracy and offloading ratio of most existing mechanisms even when AP location information is available.The present study proposed a multi-criteria wireless availability prediction(MWAP)mechanism,which utilizes historical connection patterns,historical data rate information,and vehicular trajectory computation to predict the next available AP and its expected data capacity in making offloading decisions.The proposed mechanism is decentralized,where each vehicle makes the prediction by itself.This characteristic helps the vehicle users make a proactive offloading decision that maintains the QoS for different applications.A simulation utilizing MATLAB was conducted to evaluate the performance of the proposed mechanism and benchmark it with related state-of-the-art mechanisms.A comparison was made based on the prediction error and offloading ratio of the proposed mechanism in several scenarios.The MWAP mechanism exhibited a lower prediction error(i.e.,below 20%)and higher offloading ratio(i.e.,above 90%)than the existing mechanisms for several tested scenarios.
文摘针对同步多链路Wi-Fi网络资源分配复杂度高并且难以同时优化系统吞吐量和传输时延以提升网络性能的问题,提出了一种基于双重深度Q网络(double deep Q network,DDQN)的Wi-Fi网络同步多链路资源分配和优化算法。将各个链路信道划分为多种不同规格的资源块(resource unit,RU)组合,利用DDQN进行RU组合选取,结合KM(Kuhn-Munkres)算法为设备分配RU,从而降低资源分配复杂度;针对网络性能提升问题,将满意度定义为吞吐量和时延的函数,联合优化资源分配和传输时长,以提升满意度,从而提升系统吞吐量、降低传输时延。在饱和业务流量及低负载流量模型下进行仿真分析,结果表明,所提算法具有较好的收敛性能,并且在提升满意度和系统吞吐量、降低传输时延方面优于对比算法。
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金funding from TECNALIA,Basque Research and Technology Alliance(BRTA)supported by the project aOptimization of Deep Learning algorithms for Edge IoT devices for sensorization and control in Buildings and Infrastructures(EMBED)funded by the Gipuzkoa Provincial Council and approved under the 2023 call of the Guipuzcoan Network of Science,Technology and Innovation Program with File Number 2023-CIEN-000051-01.
文摘In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer task offloading.For many resource-constrained devices,the computation of many types of tasks is not feasible because they cannot support such computations as they do not have enough available memory and processing capacity.In this scenario,it is worth considering transferring these tasks to resource-rich platforms,such as Edge Data Centers or remote cloud servers.For different reasons,it is more exciting and appropriate to download various tasks to specific download destinations depending on the properties and state of the environment and the nature of the functions.At the same time,establishing an optimal offloading policy,which ensures that all tasks are executed within the required latency and avoids excessive workload on specific computing centers is not easy.This study presents two alternatives to solve the offloading decision paradigm by introducing two well-known algorithms,Graph Neural Networks(GNN)and Deep Q-Network(DQN).It applies the alternatives on a well-known Edge Computing simulator called PureEdgeSimand compares them with the two defaultmethods,Trade-Off and Round Robin.Experiments showed that variants offer a slight improvement in task success rate and workload distribution.In terms of energy efficiency,they provided similar results.Finally,the success rates of different computing centers are tested,and the lack of capacity of remote cloud servers to respond to applications in real-time is demonstrated.These novel ways of finding a download strategy in a local networking environment are unique as they emulate the state and structure of the environment innovatively,considering the quality of its connections and constant updates.The download score defined in this research is a crucial feature for determining the quality of a download path in the GNN training process and has not previously been proposed.Simultaneously,the suitability of Reinforcement Learning(RL)techniques is demonstrated due to the dynamism of the network environment,considering all the key factors that affect the decision to offload a given task,including the actual state of all devices.