Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been pre...Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.展开更多
A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental e...A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.展开更多
We propose a novel indoor positioning algorithm based on the received signal strength(RSS) fingerprint. The proposed algorithm can be divided into three steps, an offline phase at which an advanced clustering(AC) stra...We propose a novel indoor positioning algorithm based on the received signal strength(RSS) fingerprint. The proposed algorithm can be divided into three steps, an offline phase at which an advanced clustering(AC) strategy is used, an online phase of approximate localization at which cluster matching is used, and an online phase of precise localization with kernel ridge regression. Specifically, after offline fingerprint collection and similarity measurement, we employ an AC strategy based on the K-medoids clustering algorithm using additional reference points that are geographically located at the outer cluster boundary to enrich the data of each cluster. During the approximate localization, RSS measurements are compared with the cluster radio maps to determine to which cluster the target most likely belongs. Both the Euclidean distance of the RSSs and the Hamming distance of the coverage vectors between the observations and training records are explored for cluster matching. Then, a kernel-based ridge regression method is used to obtain the ultimate positioning of the target. The performance of the proposed algorithm is evaluated in two typical indoor environments, and compared with those of state-of-the-art algorithms. The experimental results demonstrate the effectiveness and advantages of the proposed algorithm in terms of positioning accuracy and complexity.展开更多
Indoor localization systems are crucial in addressing the limitations of traditional global positioning system(GPS)in indoor environments due to signal attenuation issues.As complex indoor spaces become more sophistic...Indoor localization systems are crucial in addressing the limitations of traditional global positioning system(GPS)in indoor environments due to signal attenuation issues.As complex indoor spaces become more sophisticated,indoor localization systems become essential for improving user experience,safety,and operational efficiency.Indoor localization methods based on Wi-Fi fingerprints require a high-density location fingerprint database,but this can increase the computational burden in the online phase.Bayesian networks,which integrate prior knowledge or domain expertise,are an effective solution for accurately determining indoor user locations.These networks use probabilistic reasoning to model relationships among various localization parameters for indoor environments that are challenging to navigate.This article proposes an adaptive Bayesian model for multi-floor environments based on fingerprinting techniques to minimize errors in estimating user location.The proposed system is an off-the-shelf solution that uses existing Wi-Fi infrastructures to estimate user’s location.It operates in both online and offline phases.In the offline phase,a mobile device with Wi-Fi capability collects radio signals,while in the online phase,generating samples using Gibbs sampling based on the proposed Bayesian model and radio map to predict user’s location.Experimental results unequivocally showcase the superior performance of the proposed model when compared to other existing models and methods.The proposed model achieved an impressive lower average localization error,surpassing the accuracy of competing approaches.Notably,this noteworthy achievement was attained with minimal reliance on reference points,underscoring the efficiency and efficacy of the proposed model in accurately estimating user locations in indoor environments.展开更多
In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according t...In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.展开更多
对移动目标的高精度测距是室内定位的关键。室内环境中无线接入点(Access Point, AP)采集的移动目标设备的接收信号强度指示(Received Signal Strength Indication, RSSI)受阴影衰落波动严重。受到RSSI采集频率和目标机动能力的限制,AP...对移动目标的高精度测距是室内定位的关键。室内环境中无线接入点(Access Point, AP)采集的移动目标设备的接收信号强度指示(Received Signal Strength Indication, RSSI)受阴影衰落波动严重。受到RSSI采集频率和目标机动能力的限制,AP采集到的RSSI样本量少,导致基于RSSI测距精度差。为提高基于RSSI对移动目标测距的精度,本文提出了基于RSSI的AP簇测距(AP Cluster Ranging, APCR)方法。该方法通过对多个AP进行位置约束组成AP簇采集移动目标设备的RSSI,在相同采集频率下可获得更多的RSSI样本。利用RSSI波动特点,使用最大值选取和Dixon检验相结合的方式从AP簇采集的RSSI样本中筛选出高质量的RSSI样本,以提高对移动目标的测距精度。仿真和实验结果表明,与传统RSSI处理方法相比,本方法在室内环境简单或复杂时都具有更高的测距精度,在少量RSSI采集次数下同样能保持较高精度,更能满足对移动目标测距的需求。展开更多
基金The authors extend their appreciation to the National University of Sciences and Technology for funding this work through the Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2014AA123103)
文摘A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.
基金Project supported by the National Natural Science Foundation of China (Nos. 51705324 and 61702332)。
文摘We propose a novel indoor positioning algorithm based on the received signal strength(RSS) fingerprint. The proposed algorithm can be divided into three steps, an offline phase at which an advanced clustering(AC) strategy is used, an online phase of approximate localization at which cluster matching is used, and an online phase of precise localization with kernel ridge regression. Specifically, after offline fingerprint collection and similarity measurement, we employ an AC strategy based on the K-medoids clustering algorithm using additional reference points that are geographically located at the outer cluster boundary to enrich the data of each cluster. During the approximate localization, RSS measurements are compared with the cluster radio maps to determine to which cluster the target most likely belongs. Both the Euclidean distance of the RSSs and the Hamming distance of the coverage vectors between the observations and training records are explored for cluster matching. Then, a kernel-based ridge regression method is used to obtain the ultimate positioning of the target. The performance of the proposed algorithm is evaluated in two typical indoor environments, and compared with those of state-of-the-art algorithms. The experimental results demonstrate the effectiveness and advantages of the proposed algorithm in terms of positioning accuracy and complexity.
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RPP2023011).
文摘Indoor localization systems are crucial in addressing the limitations of traditional global positioning system(GPS)in indoor environments due to signal attenuation issues.As complex indoor spaces become more sophisticated,indoor localization systems become essential for improving user experience,safety,and operational efficiency.Indoor localization methods based on Wi-Fi fingerprints require a high-density location fingerprint database,but this can increase the computational burden in the online phase.Bayesian networks,which integrate prior knowledge or domain expertise,are an effective solution for accurately determining indoor user locations.These networks use probabilistic reasoning to model relationships among various localization parameters for indoor environments that are challenging to navigate.This article proposes an adaptive Bayesian model for multi-floor environments based on fingerprinting techniques to minimize errors in estimating user location.The proposed system is an off-the-shelf solution that uses existing Wi-Fi infrastructures to estimate user’s location.It operates in both online and offline phases.In the offline phase,a mobile device with Wi-Fi capability collects radio signals,while in the online phase,generating samples using Gibbs sampling based on the proposed Bayesian model and radio map to predict user’s location.Experimental results unequivocally showcase the superior performance of the proposed model when compared to other existing models and methods.The proposed model achieved an impressive lower average localization error,surpassing the accuracy of competing approaches.Notably,this noteworthy achievement was attained with minimal reliance on reference points,underscoring the efficiency and efficacy of the proposed model in accurately estimating user locations in indoor environments.
基金partially supported by the National Natural Science Foun-dation of China(No.62071389).
文摘In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.
文摘对移动目标的高精度测距是室内定位的关键。室内环境中无线接入点(Access Point, AP)采集的移动目标设备的接收信号强度指示(Received Signal Strength Indication, RSSI)受阴影衰落波动严重。受到RSSI采集频率和目标机动能力的限制,AP采集到的RSSI样本量少,导致基于RSSI测距精度差。为提高基于RSSI对移动目标测距的精度,本文提出了基于RSSI的AP簇测距(AP Cluster Ranging, APCR)方法。该方法通过对多个AP进行位置约束组成AP簇采集移动目标设备的RSSI,在相同采集频率下可获得更多的RSSI样本。利用RSSI波动特点,使用最大值选取和Dixon检验相结合的方式从AP簇采集的RSSI样本中筛选出高质量的RSSI样本,以提高对移动目标的测距精度。仿真和实验结果表明,与传统RSSI处理方法相比,本方法在室内环境简单或复杂时都具有更高的测距精度,在少量RSSI采集次数下同样能保持较高精度,更能满足对移动目标测距的需求。