期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双微麦克风阵列与WideResNet网络的语音命令词识别
1
作者 祁潇潇 曾庆宁 赵学军 《计算机应用与软件》 北大核心 2024年第5期126-130,共5页
为了提高噪声环境下语音识别的稳健性[1],提出宽残差深度神经网络的语音识别算法。该算法结合双微麦克风阵列系统、语音数据集为双微麦克风数据集,使用功率归一化倒谱系数作为特征参数输入到残差网络中进行训练。实验表明,与ResNet15模... 为了提高噪声环境下语音识别的稳健性[1],提出宽残差深度神经网络的语音识别算法。该算法结合双微麦克风阵列系统、语音数据集为双微麦克风数据集,使用功率归一化倒谱系数作为特征参数输入到残差网络中进行训练。实验表明,与ResNet15模型、ResNet18模型相比,只有三个残差模块的宽残差网络在噪声环境下语音命令词的识别和内外部说话人检测任务中具有较高的准确度,均达到了95%以上。 展开更多
关键词 语音识别 宽残差神经网络 功率归一化倒谱系数 双微麦克风阵列
下载PDF
基于宽度和深度模型以及残差网络的综合能源负荷短期预测 被引量:1
2
作者 栗然 罗东晖 +5 位作者 李鹏程 臧向迪 张文昕 祝晋尧 严敬汝 回旭 《华北电力大学学报(自然科学版)》 CAS 北大核心 2023年第6期21-30,共10页
针对用户级综合能源系统负荷波动大,能源耦合复杂的特点,提出一种基于深度和宽度模型(Wide&Deep)和残差网络(ResNet)框架并且采用完整集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMD... 针对用户级综合能源系统负荷波动大,能源耦合复杂的特点,提出一种基于深度和宽度模型(Wide&Deep)和残差网络(ResNet)框架并且采用完整集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和主成分分析(Principal Components Analysis,PCA)的综合能源系统联合负荷预测方法。所提模型由宽度和深度两部分组成:深度部分参考ResNet拟合残差映射的思想将多个长短期神经网络(Long Short-Term Memory,LSTM)子层堆叠构建深度预测网络,深度部分数据在输入前采用CEEMDAN进行分解,并利用主成分分析对分解结果进行主要影响因素提取和排序,并通过对数据的梯级输入实现对不同信息密度数据的梯级利用;宽度部分则采用简单模型并对传统Wide&Deep-LSTM模型的Wide部分输入进行改进,有效降低了模型的训练难度。通过实际算例分析可知所提模型具有良好的预测精度和收敛速度。与常规模型相比,所提模型具有一定优越性。 展开更多
关键词 短期负荷预测 综合能源系统 长短期神经网络 深度&宽度模型 残差网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部