A current-mode PWM buck DC-DC converter is proposed. With the high-accuracy on-chip current sen- sor, the switching frequency can be selected automatically according to load requirements. This method improves efficien...A current-mode PWM buck DC-DC converter is proposed. With the high-accuracy on-chip current sen- sor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC-DC converter is fabricated with the 0.5μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained.展开更多
基金Project supported by the National Natural Science Foundation of China(No.41274047)the Natural Science Foundation of Jiangsu Province(No.BK2012639)+1 种基金the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund(No.BC2012121)the Changzhou Science and Technology Support(Industrial)Project(No.CE20120074)
文摘A current-mode PWM buck DC-DC converter is proposed. With the high-accuracy on-chip current sen- sor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC-DC converter is fabricated with the 0.5μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained.