The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption...The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption of large quantities of construction materials and also increasing environmental pollution.Inverted pavements with the aggregate interlayer(AIL)or stress absorbing membrane interlayer(SAMI)are considered to be one of the alternatives for thick conventional flexible pavements for heavy traffic corridors.The AIL or SAMI is placed between a stiff cement-treated base and asphalt concrete layer to function as crack relief layers.This change in the composition alters the behaviour of inverted pavements compared to the conventional flexible pavements.On the other hand,wide-base tires are being increasingly preferred by trucking industries due to increased fuel economy and cargo capacity.However,the effect of wide-base tires on the performance of inverted pavements is yet to be investigated.In this study,the 3D finite element(FE)models of inverted pavements considering different crack relief layers were developed,and load from dual-wheel and wide-base tires were applied.The stress-strain evolution in the various layers of inverted pavements was investigated and discussed in this study.The results indicated the higher stress and strains due to wide base tires compared to the dual-wheel assembly.Further,pavement with SAMI was found to result in lower stress and strains in the asphalt concrete layer compared to AIL pavements.展开更多
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
Concrete is generally composed of cement, water, gravel, and sand. However, some research focuses on substituting aggregates with waste materials. In this study, used tires are used as a substitute for gravel. Charact...Concrete is generally composed of cement, water, gravel, and sand. However, some research focuses on substituting aggregates with waste materials. In this study, used tires are used as a substitute for gravel. Characteristics such as tensile strength, compressive strength, and porosity were monitored at 7, 14, and 28 days of maturation. The results show that aggregates made from used tires are suitable for concrete production and can replace natural gravel. Regarding the formed concrete, low substitution rates lead to improved concrete properties, but only at an early age. A reaction between the cement and rubber could be the underlying cause. Additionally, the products of this reaction may mitigate the evolution of the compressive strength of the concrete over time.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed...In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.展开更多
Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries...Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.展开更多
Mathematical models of tire-longitudinal road adhesion for use in the study of road vehicle dynamics are set up so as to express the relations of longitudinal adhesion coefficients with the slip ratio. They perfect th...Mathematical models of tire-longitudinal road adhesion for use in the study of road vehicle dynamics are set up so as to express the relations of longitudinal adhesion coefficients with the slip ratio. They perfect the Pacejka's models in practical use by taking into account the influences of all essential parameters such as road surface condition. vehicle velocity. slip angle. vertical load and slip ratio on the longitudinal adhesion coefficients. The new models are more comprehensive more concise. simpler and more convenient in application in all kinds of simulations of car dynamics in various sorts of braking modes.展开更多
文摘The conventional flexible pavements have been constructed such that the stiffness of the layer reduces with depth.The crust thickness becomes significantly high for heavy traffic corridors resulting in the consumption of large quantities of construction materials and also increasing environmental pollution.Inverted pavements with the aggregate interlayer(AIL)or stress absorbing membrane interlayer(SAMI)are considered to be one of the alternatives for thick conventional flexible pavements for heavy traffic corridors.The AIL or SAMI is placed between a stiff cement-treated base and asphalt concrete layer to function as crack relief layers.This change in the composition alters the behaviour of inverted pavements compared to the conventional flexible pavements.On the other hand,wide-base tires are being increasingly preferred by trucking industries due to increased fuel economy and cargo capacity.However,the effect of wide-base tires on the performance of inverted pavements is yet to be investigated.In this study,the 3D finite element(FE)models of inverted pavements considering different crack relief layers were developed,and load from dual-wheel and wide-base tires were applied.The stress-strain evolution in the various layers of inverted pavements was investigated and discussed in this study.The results indicated the higher stress and strains due to wide base tires compared to the dual-wheel assembly.Further,pavement with SAMI was found to result in lower stress and strains in the asphalt concrete layer compared to AIL pavements.
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
文摘Concrete is generally composed of cement, water, gravel, and sand. However, some research focuses on substituting aggregates with waste materials. In this study, used tires are used as a substitute for gravel. Characteristics such as tensile strength, compressive strength, and porosity were monitored at 7, 14, and 28 days of maturation. The results show that aggregates made from used tires are suitable for concrete production and can replace natural gravel. Regarding the formed concrete, low substitution rates lead to improved concrete properties, but only at an early age. A reaction between the cement and rubber could be the underlying cause. Additionally, the products of this reaction may mitigate the evolution of the compressive strength of the concrete over time.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
文摘In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.
文摘Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.
文摘Mathematical models of tire-longitudinal road adhesion for use in the study of road vehicle dynamics are set up so as to express the relations of longitudinal adhesion coefficients with the slip ratio. They perfect the Pacejka's models in practical use by taking into account the influences of all essential parameters such as road surface condition. vehicle velocity. slip angle. vertical load and slip ratio on the longitudinal adhesion coefficients. The new models are more comprehensive more concise. simpler and more convenient in application in all kinds of simulations of car dynamics in various sorts of braking modes.