The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the pre...The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.展开更多
Wiener filtering is used to estimate receiver function in a time_domain. With the vertical component of 3_component teleseismic P waveform as the input of a Wiener filter, receiver function as the filter response, and...Wiener filtering is used to estimate receiver function in a time_domain. With the vertical component of 3_component teleseismic P waveform as the input of a Wiener filter, receiver function as the filter response, and radial and tangential components as the expected output, receiver function is estimated by minimizing the error between expected and actual outputs. Receiver function can be obtained by solving the Toeplitz equation using the Levinson algorithm. The non_singularity of the Toeplitz equation ensures the stability of Wiener Deconvolution. Both synthetic and observational seismogram checks show that Wiener Deconvolution is an effective time_domain method to estimate receiver function from teleseismic P waveform.展开更多
How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the...How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,展开更多
This paper proposes a novel microphone array speech denoising scheme based on tensor filtering methods including truncated HOSVD(High-Order Singular Value Decomposition), low rank tensor approximation and multi-mode W...This paper proposes a novel microphone array speech denoising scheme based on tensor filtering methods including truncated HOSVD(High-Order Singular Value Decomposition), low rank tensor approximation and multi-mode Wiener filtering. Microphone array speech signal is represented in three-order tensor space with channel, time, and spectrum modes and then tensor filtering model can be designed to process the multiway array data. As to the first method, noise can be reduced through the truncated HOSVD which is a simple scheme in tensor processing. It is more accurate to find the lower-rank approximation of the three-order tensor with Tucker model. Then MDL(Minimum Description Length) criterion is used to estimate the optimal tensor rank in the second method. Further, multimode Wiener filtering approach upon tensor analysis can be considered as the spanning of one-mode wiener filtering. How to take advantages of tensor model to obtain a set of filters is the heart of the novel scheme. The performances of the proposed three approaches are evaluated with objective indexes and listening quality test. The experimental results indicate that the proposed tenor filtering methods have potential ability of retrieving the target signal from noisy microphone array signal and the multi-mode Wiener filtering method provides the best denoising results among the three ones.展开更多
On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology wa...On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.展开更多
A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme...A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme only requires the data from the primary range bin,thus it can suppress discrete interferers efficiently,without calculating the inverse of covariance matrix.Comparing to the original MWF approach,the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data.The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence.The numeric results by using simulated data exhibit a good agreement with the proposed theory.展开更多
In order to restore noisy fractal Brownian motion(FBM),discrete fractional gaussiannoise(DFGN) combined with noise increments is decomposed by Haar wavelets based on Mallatalgorithm.Considering the correlation of deta...In order to restore noisy fractal Brownian motion(FBM),discrete fractional gaussiannoise(DFGN) combined with noise increments is decomposed by Haar wavelets based on Mallatalgorithm.Considering the correlation of detail coefficients,a bank of Wiener filters are used to estimatethe detail coefficients to reconstruct DFGN considering the estimated approximation coefficients in thecoarsest scale in the minimum mean square sense.Then,the reconstructed DFGN is used to restore FBM.In the digital simulation,in light of the restoration mean square error,we show that the suppose that thecorrelation of detail coefficients and the approximation coefficients in the coarsest scale for any Hurstcould be avoided is unrealistic.Moreover,we calculate the estimation root mean square error of the hurstparameter of the restored FBM to show the validity of our algorithm.展开更多
We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We fi...We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV.展开更多
To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was...To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.展开更多
At present, almost all the systems and products for speech recognition are working in quiet environment and their performances are degraded or even can′t work when they are operated in high noisy environment. In this...At present, almost all the systems and products for speech recognition are working in quiet environment and their performances are degraded or even can′t work when they are operated in high noisy environment. In this paper, after analyzing the features of speech and noise, a speech enhancement method for LPC autoregressive model for command words recognition used in noisy environment is proposed, and an experimental system is realized. In different background noisy environments, we conduct experiments about SNR, basic accuracy, noise resistant ability and system environment adaptability with different microphones. The experimental results show that the system has good recognition performance in high noisy environments. The system can resist many kinds of noises and meet the needs of application areas on the whole such as military, traffic, marketplace and factory etc.展开更多
Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculo...Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.展开更多
A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in mult...A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.展开更多
Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels techni...Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample's thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.展开更多
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ...Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.展开更多
In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range...In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV’s detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.展开更多
In this paper, we propose wavelet-based denois-ing attack methods on imagewatermarking in discrete cosine transform (DCT) or discrete Fourier transform (DFT) domain ordiscrete wavelet transform (DWT) domain Wiener fil...In this paper, we propose wavelet-based denois-ing attack methods on imagewatermarking in discrete cosine transform (DCT) or discrete Fourier transform (DFT) domain ordiscrete wavelet transform (DWT) domain Wiener filtering based on wavelet transform is performed inapproximation subband to remove DCI or DFT domain watermark, and adaptive wavelet soft thresholdingis employed to remove the watermark resided in detail subbands of DWT domain.展开更多
Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pep...Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.展开更多
This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant...This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.展开更多
A severe problem in modern information systems is Digital media tampering along with fake information.Even though there is an enhancement in image development,image forgery,either by the photographer or via image mani...A severe problem in modern information systems is Digital media tampering along with fake information.Even though there is an enhancement in image development,image forgery,either by the photographer or via image manipulations,is also done in parallel.Numerous researches have been concentrated on how to identify such manipulated media or information manually along with automatically;thus conquering the complicated forgery methodologies with effortlessly obtainable technologically enhanced instruments.However,high complexity affects the developed methods.Presently,it is complicated to resolve the issue of the speed-accuracy trade-off.For tackling these challenges,this article put forward a quick and effective Copy-Move Forgery Detection(CMFD)system utilizing a novel Quad-sort Moth Flame(QMF)Light Gradient Boosting Machine(QMF-Light GBM).Utilizing Borel Transform(BT)-based Wiener Filter(BWF)and resizing,the input images are initially pre-processed by eliminating the noise in the proposed system.After that,by utilizing the Orientation Preserving Simple Linear Iterative Clustering(OPSLIC),the pre-processed images,partitioned into a number of grids,are segmented.Next,as of the segmented images,the significant features are extracted along with the feature’s distance is calculated and matched with the input images.Next,utilizing the Union Topological Measure of Pattern Diversity(UTMOPD)method,the false positive matches that took place throughout the matching process are eliminated.After that,utilizing the QMF-Light GBM visualization,the visualization of forged in conjunction with non-forged images is performed.The extensive experiments revealed that concerning detection accuracy,the proposed system could be extremely precise when contrasted to some top-notch approaches.展开更多
Secret key generation from wireless channel is an emerging technology for communication network security,which exploits the reciprocity and time variability of wireless channels to generate symmetrical keys between th...Secret key generation from wireless channel is an emerging technology for communication network security,which exploits the reciprocity and time variability of wireless channels to generate symmetrical keys between the communication parties.Compared to the existing asymmetric key distribution methods,secret key generation from wireless channel has low complexity and high security,making it especially suitable for distributed networks.In vehicular communications,the reciprocity of wireless channel is degraded due to the movement of vehicular.This paper proposes a high consistency wireless key generation scheme for vehicular communication,especially applied to LTE-V2X(LTE vehicle to everything)systems.A channel reciprocity enhancement method is designed based on Wiener filter extrapolation,which can efficiently reduce the mismatch between the channels at the receiver and significantly reduce key disagreement rate.A real experimental system based on vehicle and universal software radio peripheral(USRP)platform is setup to verify the secret key generation in LTE-V2X systems.The effectiveness of the proposed method is verified in simulations and extensive practical tests.展开更多
基金support of the National Natural Science Fundation of China (Nos. 41574105 and 41674118)the National Science and Technology Major Project of China (No. 2016ZX05027-002)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ03)
文摘The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
文摘Wiener filtering is used to estimate receiver function in a time_domain. With the vertical component of 3_component teleseismic P waveform as the input of a Wiener filter, receiver function as the filter response, and radial and tangential components as the expected output, receiver function is estimated by minimizing the error between expected and actual outputs. Receiver function can be obtained by solving the Toeplitz equation using the Levinson algorithm. The non_singularity of the Toeplitz equation ensures the stability of Wiener Deconvolution. Both synthetic and observational seismogram checks show that Wiener Deconvolution is an effective time_domain method to estimate receiver function from teleseismic P waveform.
基金supported by the National Natural Science Foundation of China(41404020)
文摘How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,
基金supported by the National Natural Science Foundation of China(No.61571044,No.11590772,No.61473041 and No.61620106002)
文摘This paper proposes a novel microphone array speech denoising scheme based on tensor filtering methods including truncated HOSVD(High-Order Singular Value Decomposition), low rank tensor approximation and multi-mode Wiener filtering. Microphone array speech signal is represented in three-order tensor space with channel, time, and spectrum modes and then tensor filtering model can be designed to process the multiway array data. As to the first method, noise can be reduced through the truncated HOSVD which is a simple scheme in tensor processing. It is more accurate to find the lower-rank approximation of the three-order tensor with Tucker model. Then MDL(Minimum Description Length) criterion is used to estimate the optimal tensor rank in the second method. Further, multimode Wiener filtering approach upon tensor analysis can be considered as the spanning of one-mode wiener filtering. How to take advantages of tensor model to obtain a set of filters is the heart of the novel scheme. The performances of the proposed three approaches are evaluated with objective indexes and listening quality test. The experimental results indicate that the proposed tenor filtering methods have potential ability of retrieving the target signal from noisy microphone array signal and the multi-mode Wiener filtering method provides the best denoising results among the three ones.
文摘On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.
基金supported by the National Nature Science Foundation of China under Grant No. 60702070
文摘A new method combining space-time preprocessing with multistage Wiener filters(STPMWF)is proposed to improve the performance of space-time adaptive processing(STAP)in nonhomogeneous clutter scenario.The new scheme only requires the data from the primary range bin,thus it can suppress discrete interferers efficiently,without calculating the inverse of covariance matrix.Comparing to the original MWF approach,the proposed scheme can be regarded as practical solutions for robust and effective STAP of nonhomogeneous radar data.The theoretical analysis shows that our STPMWF is simple in implementation and fast in convergence.The numeric results by using simulated data exhibit a good agreement with the proposed theory.
文摘In order to restore noisy fractal Brownian motion(FBM),discrete fractional gaussiannoise(DFGN) combined with noise increments is decomposed by Haar wavelets based on Mallatalgorithm.Considering the correlation of detail coefficients,a bank of Wiener filters are used to estimatethe detail coefficients to reconstruct DFGN considering the estimated approximation coefficients in thecoarsest scale in the minimum mean square sense.Then,the reconstructed DFGN is used to restore FBM.In the digital simulation,in light of the restoration mean square error,we show that the suppose that thecorrelation of detail coefficients and the approximation coefficients in the coarsest scale for any Hurstcould be avoided is unrealistic.Moreover,we calculate the estimation root mean square error of the hurstparameter of the restored FBM to show the validity of our algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12293032,120101002,12173097,and U1931123)the National Key Basic Research and Development Program of China(Grant Nos.2020YFC2201703 and 2018YFA0404701)Chinese Academy of Sciences(Grant No.GJJSTD20210002)。
文摘We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV.
基金Project(2009AA04Z214) supported by the National High Technology Research and Development Program of ChinaProject(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘To denoise the diffusion weighted images (DWls) featured as multi-boundary, which was very important for the calculation of accurate DTIs (diffusion tensor magnetic resonance imaging), a modified Wiener filter was proposed. Through analyzing the widely accepted adaptive Wiener filter in image denoising fields, which suffered from annoying noise around the edges of DWIs and in turn greatly affected the denoising effect of DWIs, a local-shift method capable of overcoming the defect of the adaptive Wiener filter was proposed to help better denoising DWIs and the modified Wiener filter was constructed accordingly. To verify the denoising effect of the proposed method, the modified Wiener filter and adaptive Wiener filter were performed on the noisy DWI data, respectively, and the results of different methods were analyzed in detail and put into comparison. The experimental data show that, with the modified Wiener method, more satisfactory results such as lower non-positive tensor percentage and lower mean square errors of the fractional anisotropy map and trace map are obtained than those with the adaptive Wiener method, which in turn helps to produce more accurate DTIs.
文摘At present, almost all the systems and products for speech recognition are working in quiet environment and their performances are degraded or even can′t work when they are operated in high noisy environment. In this paper, after analyzing the features of speech and noise, a speech enhancement method for LPC autoregressive model for command words recognition used in noisy environment is proposed, and an experimental system is realized. In different background noisy environments, we conduct experiments about SNR, basic accuracy, noise resistant ability and system environment adaptability with different microphones. The experimental results show that the system has good recognition performance in high noisy environments. The system can resist many kinds of noises and meet the needs of application areas on the whole such as military, traffic, marketplace and factory etc.
基金supported by a grant from the National Institute of Information and Communications Technology(NICT),Japan
文摘Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.
文摘A low-complexity method for direction of arrival(DOA) estimation based on estimation signal parameters via rotational invariance technique(ESPRIT) is proposed.Instead of using the cross-correlation vectors in multistage Wiener filter(MSWF),the orthogonal residual vectors obtained in conjugate gradient(CG) method span the signal subspace used by ESPRIT.The computational complexity of the proposed method is significantly reduced,since the signal subspace estimation mainly needs two matrixvector complex multiplications at the iteration of data level.Furthermore,the prior training data are not needed in the proposed method.To overcome performance degradation at low signal to noise ratio(SNR),the expanded signal subspace spanned by more basis vectors is used and simultaneously renders ESPRIT yield redundant DOAs,which can be excluded by performing ESPRIT once more using the unexpanded signal subspace.Compared with the traditional ESPRIT methods by MSWF and eigenvalue decomposition(EVD),numerical results demonstrate the satisfactory performance of the proposed method.
基金supported in part by National Natural Science Foundation of China(Nos.50937004,50777051)
文摘Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample's thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.
基金provided by the Heilongjiang Provincial Department of Education Planning Project (No.GBC1212076)the Central University Research Project (No.00-800015Q7)
文摘Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.
基金supported by the National Natural Science Foundation of China(No.60178017)
文摘In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV’s detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.
文摘In this paper, we propose wavelet-based denois-ing attack methods on imagewatermarking in discrete cosine transform (DCT) or discrete Fourier transform (DFT) domain ordiscrete wavelet transform (DWT) domain Wiener filtering based on wavelet transform is performed inapproximation subband to remove DCI or DFT domain watermark, and adaptive wavelet soft thresholdingis employed to remove the watermark resided in detail subbands of DWT domain.
文摘Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.
基金the Innovation Foundation of NUDT forPh.D.graduates.
文摘This paper introduces the preconditioned methods for Space-Time Adaptive Processing(STAP).Using the Block-Toeplitz-Toeplitz-Block(BTTB)structure of the clutter-plus-noise covari-ance matrix,a Block-Circulant-Circulant-Block(BCCB)preconditioner is constructed.Based on thepreconditioner,a Preconditioned Multistage Wiener Filter(PMWF)which can be implemented by thePreconditioned Conjugate Gradient(PCG)method is proposed.Simulation results show that thePMWF has faster convergence rate and lower processing rank compared with the MWF.
文摘A severe problem in modern information systems is Digital media tampering along with fake information.Even though there is an enhancement in image development,image forgery,either by the photographer or via image manipulations,is also done in parallel.Numerous researches have been concentrated on how to identify such manipulated media or information manually along with automatically;thus conquering the complicated forgery methodologies with effortlessly obtainable technologically enhanced instruments.However,high complexity affects the developed methods.Presently,it is complicated to resolve the issue of the speed-accuracy trade-off.For tackling these challenges,this article put forward a quick and effective Copy-Move Forgery Detection(CMFD)system utilizing a novel Quad-sort Moth Flame(QMF)Light Gradient Boosting Machine(QMF-Light GBM).Utilizing Borel Transform(BT)-based Wiener Filter(BWF)and resizing,the input images are initially pre-processed by eliminating the noise in the proposed system.After that,by utilizing the Orientation Preserving Simple Linear Iterative Clustering(OPSLIC),the pre-processed images,partitioned into a number of grids,are segmented.Next,as of the segmented images,the significant features are extracted along with the feature’s distance is calculated and matched with the input images.Next,utilizing the Union Topological Measure of Pattern Diversity(UTMOPD)method,the false positive matches that took place throughout the matching process are eliminated.After that,utilizing the QMF-Light GBM visualization,the visualization of forged in conjunction with non-forged images is performed.The extensive experiments revealed that concerning detection accuracy,the proposed system could be extremely precise when contrasted to some top-notch approaches.
基金supported in part by the National Natural Science Foundation of China under Grant 62171120,and 62001106National Key Research and Development Program of China(2020YFE0200600)+3 种基金Jiangsu Natural Science Foundation under Grant BK20200350Jiangsu Provincial Key Laboratory of Network and Information Security No.BM2003201Guangdong Key Research and Development Program under Grant 2020B0303010001Purple Mountain Laboratories for Network and Communication Security.
文摘Secret key generation from wireless channel is an emerging technology for communication network security,which exploits the reciprocity and time variability of wireless channels to generate symmetrical keys between the communication parties.Compared to the existing asymmetric key distribution methods,secret key generation from wireless channel has low complexity and high security,making it especially suitable for distributed networks.In vehicular communications,the reciprocity of wireless channel is degraded due to the movement of vehicular.This paper proposes a high consistency wireless key generation scheme for vehicular communication,especially applied to LTE-V2X(LTE vehicle to everything)systems.A channel reciprocity enhancement method is designed based on Wiener filter extrapolation,which can efficiently reduce the mismatch between the channels at the receiver and significantly reduce key disagreement rate.A real experimental system based on vehicle and universal software radio peripheral(USRP)platform is setup to verify the secret key generation in LTE-V2X systems.The effectiveness of the proposed method is verified in simulations and extensive practical tests.