针对铁路异物侵限频繁发生导致的列车运行安全问题,提出一种基于背景感知相关滤波器的铁路异物侵限跟踪方法。利用方向梯度直方图(HOG,Histogram of Oriented Gradient)特征提取铁路侵限异物自身特征,结合剪裁矩阵,以增加视频帧中实际...针对铁路异物侵限频繁发生导致的列车运行安全问题,提出一种基于背景感知相关滤波器的铁路异物侵限跟踪方法。利用方向梯度直方图(HOG,Histogram of Oriented Gradient)特征提取铁路侵限异物自身特征,结合剪裁矩阵,以增加视频帧中实际背景的负样本;使用交替方向乘子法(ADMM,Alternating Direction Method of Multipliers)训练背景感知相关滤波器,减少计算复杂度,在保证跟踪速度的前提下,提升跟踪侵限异物的准确性,从而适应铁路沿线环境中由于侵限异物的形变、快速移动或天气等原因造成的目标丢失及跟踪框漂移等情况。实验结果表明,该方法对铁路侵限异物的跟踪精确度和AUC(Area Under Curve)值分别达到93%和71.9%,均高于SRDCF、KCF、ASLA和CSK等算法,具有更好的准确性。展开更多
文摘针对铁路异物侵限频繁发生导致的列车运行安全问题,提出一种基于背景感知相关滤波器的铁路异物侵限跟踪方法。利用方向梯度直方图(HOG,Histogram of Oriented Gradient)特征提取铁路侵限异物自身特征,结合剪裁矩阵,以增加视频帧中实际背景的负样本;使用交替方向乘子法(ADMM,Alternating Direction Method of Multipliers)训练背景感知相关滤波器,减少计算复杂度,在保证跟踪速度的前提下,提升跟踪侵限异物的准确性,从而适应铁路沿线环境中由于侵限异物的形变、快速移动或天气等原因造成的目标丢失及跟踪框漂移等情况。实验结果表明,该方法对铁路侵限异物的跟踪精确度和AUC(Area Under Curve)值分别达到93%和71.9%,均高于SRDCF、KCF、ASLA和CSK等算法,具有更好的准确性。