For spectrally negative Lévy process (SNLP), we find an expression, in terms of scale functions, for a potential measure involving the maximum and the last time of reaching the maximum up to a draw-down time. As ...For spectrally negative Lévy process (SNLP), we find an expression, in terms of scale functions, for a potential measure involving the maximum and the last time of reaching the maximum up to a draw-down time. As applications, we obtain a potential measure for the reflected SNLP and recover a joint Laplace transform for the Wiener-Hopf factorization for SNLP.展开更多
This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ...This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.展开更多
Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of ...Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.展开更多
By using the Riemann-Hilbert method and the Corona theorem, Wiener-Hopf factorization for a class of matrix functions is studied. Under appropriate assumption, a sufficient and neces- sary condition for the existence ...By using the Riemann-Hilbert method and the Corona theorem, Wiener-Hopf factorization for a class of matrix functions is studied. Under appropriate assumption, a sufficient and neces- sary condition for the existence of the matrix function admitting canonical factorization is obtained and the solution to a class of non-linear Riemann-Hilbert problems is also given. Furthermore, by means of non-standard Corona theorem partial estimation of the general factorization can be obtained.展开更多
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
·AIM:To identify various risk factors that may play a significant role in the development of congenital nasolacrimal duct obstruction(CNLDO).·METHODS:This observational case-control study included a case gro...·AIM:To identify various risk factors that may play a significant role in the development of congenital nasolacrimal duct obstruction(CNLDO).·METHODS:This observational case-control study included a case group of 122 children less than two years of age with CNLDO who underwent probing and irrigation treatment at the ophthalmology department of Imam Khomeini Hospital in Ahvaz,Iran,from June 2022 to June2024.A control group of 122 age-matched children without CNLDO was also included for comparison.Data was collected from the children's medical records.·RESULTS:The study found a significant correlation between the occurrence of CNLDO and several maternal factors,such as preeclampsia,the use of levothyroxine,hypothyroidism,having more than three pregnancies(gravidity>3),natural pregnancy,and gestational diabetes mellitus.Additionally,in children,factors,such as oxygen therapy,anemia,reflux,jaundice,and a family history of CNLDO in first-degree relatives were associated with CNLDO,and maternal preeclampsia and hypothyroidism were found to significantly increase the risk of developing CNLDO in children.·CONCLUSION:Given that CNLDO affects both premature and full-term children,the present findings may potentially facilitate the early identification of children and infants at risk of nasolacrimal duct obstruction,thereby preventing the onset of chronic dacryocystitis.展开更多
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra...Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).展开更多
BACKGROUND The relationship between autoimmune gastritis(AIG)and gastric polyps(GPs)is not well understood.AIM To explore the clinical characteristics and risk factors of AIG with GPs in patients.METHODS This double c...BACKGROUND The relationship between autoimmune gastritis(AIG)and gastric polyps(GPs)is not well understood.AIM To explore the clinical characteristics and risk factors of AIG with GPs in patients.METHODS This double center retrospective study included 530 patients diagnosed with AIG from July 2019 to July 2023.We collected clinical,biochemical,serological,and demographic data were of each patient.Logistic regression analyses,both multivariate and univariate,were conducted to pinpoint independent risk factors for GPs in patients with AIG patients.Receiver operating characteristic curves were utilized to establish the optimal cutoff values,sensitivity,and specificity of these risk factors for predicting GPs in patients with AIG.RESULTS Patients with GPs had a higher median age than those without GPs[61(52.25-69)years vs 58(47-66)years,P=0.006].The gastrin-17 levels were significantly elevated in patients with GPs compared with those without GPs[91.9(34.2-138.9)pmol/mL vs 60.9(12.6-98.4)pmol/mL,P<0.001].Additionally,the positive rate of parietal cell antibody(PCA)antibody was higher in these patients than in those without GPs(88.6%vs 73.6%,P<0.001).Multivariate and univariate analyses revealed that PCA positivity[odds ratio(OR)=2.003,P=0.017],pepsinogen II(OR=1.053,P=0.015),and enterochromaffin like cells hyperplasia(OR=3.116,P<0.001)were significant risk factors for GPs,while pepsinogen I was identified as a protective factor.CONCLUSION PCA positivity and enterochromaffin like cells hyperplasia are significant risk factor for the development of GPs in patients with AIG.Elevated gastrin-17 levels may also play a role in this process.These findings suggest potential targets for further research and therapeutic intervention in managing GPs in patients with AIG.展开更多
BACKGROUND At present,the influencing factors of social function in patients with residual depressive symptoms are still unclear.Residual depressive symptoms are highly harmful,leading to low mood in patients,affectin...BACKGROUND At present,the influencing factors of social function in patients with residual depressive symptoms are still unclear.Residual depressive symptoms are highly harmful,leading to low mood in patients,affecting work and interpersonal communication,increasing the risk of recurrence,and adding to the burden on families.Studying the influencing factors of their social function is of great significance.AIM To explore the social function score and its influencing factors in patients with residual depressive symptoms.METHODS This observational study surveyed patients with residual depressive symptoms(case group)and healthy patients undergoing physical examinations(control group).Participants were admitted between January 2022 and December 2023.Social functioning was assessed using the Sheehan Disability Scale(SDS),and scores were compared between groups.Factors influencing SDS scores in patients with residual depressive symptoms were analyzed by applying multiple linear regression while using the receiver operating characteristic curve,and these RESULTS The SDS scores of the 158 patients with depressive symptoms were 11.48±3.26.Compared with the control group,the SDS scores and all items in the case group were higher.SDS scores were higher in patients with relapse,discon-tinuous medication,drug therapy alone,severe somatic symptoms,obvious residual symptoms,and anxiety scores≥8.Disease history,medication compliance,therapy method,and residual symptoms correlated positively with SDS scores(r=0.354,0.414,0.602,and 0.456,respectively).Independent influencing factors included disease history,medication compliance,therapy method,somatic symptoms,residual symptoms,and anxiety scores(P<0.05).The areas under the curve for predicting social functional impairment using these factors were 0.713,0.559,0.684,0.729,0.668,and 0.628,respectively,with sensitivities of 79.2%,61.8%,76.8%,81.7%,63.6%,and 65.5%and specificities of 83.3%,87.5%,82.6%,83.3%,86.7%,and 92.1%,respectively.CONCLUSION The social function scores of patients with residual symptoms of depression are high.They are affected by disease history,medication compliance,therapy method,degree of somatic symptoms,residual symptoms,and anxiety.展开更多
After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
This manuscript explores the recent study by Cui et al which assessed the interplay between inflammatory cytokines and brain-derived neurotrophic factor(BDNF)levels in first-episode schizophrenia patients.The study re...This manuscript explores the recent study by Cui et al which assessed the interplay between inflammatory cytokines and brain-derived neurotrophic factor(BDNF)levels in first-episode schizophrenia patients.The study revealed that higher levels of interleukin-6 and tumor necrosis factor-αcorrelated with reduced BDNF levels and poorer cognitive performance.Schizophrenia is a severe psy-chiatric disorder impacting approximately 1%of the global population,charac-terized by positive symptoms(hallucinations and delusions),negative symptoms(diminished motivation and cognitive impairments)and disorganized thoughts and behaviors.Emerging research highlights the role of BDNF as a potential biomarker for early diagnosis and therapeutic targeting.The findings from Cui et al’s study suggest that targeting neuroinflammation and enhancing BDNF levels may improve cognitive outcomes.Effective treatment approaches involve a com-bination of pharmacological and non-pharmacological interventions tailored to individual patient needs.Hence,monitoring cognitive and neuroinflammatory markers is essential for improving patient outcomes and quality of life.Conse-quently,this manuscript highlights the need for an integrated approach to schizo-phrenia management,considering both clinical symptoms and underlying neuro-biological changes.展开更多
BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling p...BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.展开更多
BACKGROUND The burden of mental disorders(MD)in the Western Pacific Region(WPR)re-mains a critical public health concern,with substantial variations across demogra-phics and countries.AIM To analyze the burden of MD i...BACKGROUND The burden of mental disorders(MD)in the Western Pacific Region(WPR)re-mains a critical public health concern,with substantial variations across demogra-phics and countries.AIM To analyze the burden of MD in the WPR from 1990 to 2021,along with associated risk factors,to reveal changing trends and emerging challenges.METHODS We used data from the Global Burden of Disease 2021,analyzing prevalence,incidence,and disability-adjusted life years(DALYs)of MD from 1990 to 2021.Statistical methods included age-standardisation and uncertainty analysis to address variations in population structure and data completeness.RESULTS Between 1990 and 2021,the prevalence of MD rose from 174.40 million cases[95%uncertainty interval(UI):160.17-189.84]to 234.90 million cases(95%UI:219.04-252.50),with corresponding DALYs increasing from 22.8 million(95%UI:17.22-28.79)to 32.07 million(95%UI:24.50-40.68).During this period,the burden of MD shifted towards older age groups.Depressive and anxiety disorders were predominant,with females showing higher DALYs for depressive and anxiety disorders,and males more affected by conduct disorders,attention-deficit hyperactivity disorder,and autism spectrum disorders.Australia,New Zealand,and Malaysia reported the highest burdens,whereas Vietnam,China,and Brunei Darussalam reported the lowest.Additionally,childhood sexual abuse and bullying,and intimate partner violence emerged as significant risk factors.CONCLUSION This study highlights the significant burden of MD in the WPR,with variations by age,gender,and nation.The coronavirus disease 2019 pandemic has exacerbated the situation,emphasizing the need for a coordinated response.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el...During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective ...Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.展开更多
基金Man Chen was supported by the China Scholarship Council(No.201908110314)Xianyuan Wu was supported by the National Natural Science Foundation of China(Grant No.11471222)Man Chen and Xianyuan Wu were supported by the Academy for Multidisciplinary Studies,Capital Normal University,and Man Chen and Xiaowen Zhou were supported by RGPIN-2016-06704.
文摘For spectrally negative Lévy process (SNLP), we find an expression, in terms of scale functions, for a potential measure involving the maximum and the last time of reaching the maximum up to a draw-down time. As applications, we obtain a potential measure for the reflected SNLP and recover a joint Laplace transform for the Wiener-Hopf factorization for SNLP.
基金supported by Project of Chongqing Science and Technology Bureau (cstc2022jxjl0005)。
文摘This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.
基金supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+3 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211)Innovative Research Project for Graduate Students in Hainan Province(Grant Nos.Qhys2023-96,Qhys2023-95).
文摘Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms.
基金Supported by the National Natural Science Foundation of China(10471107)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060486001)
文摘By using the Riemann-Hilbert method and the Corona theorem, Wiener-Hopf factorization for a class of matrix functions is studied. Under appropriate assumption, a sufficient and neces- sary condition for the existence of the matrix function admitting canonical factorization is obtained and the solution to a class of non-linear Riemann-Hilbert problems is also given. Furthermore, by means of non-standard Corona theorem partial estimation of the general factorization can be obtained.
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
文摘·AIM:To identify various risk factors that may play a significant role in the development of congenital nasolacrimal duct obstruction(CNLDO).·METHODS:This observational case-control study included a case group of 122 children less than two years of age with CNLDO who underwent probing and irrigation treatment at the ophthalmology department of Imam Khomeini Hospital in Ahvaz,Iran,from June 2022 to June2024.A control group of 122 age-matched children without CNLDO was also included for comparison.Data was collected from the children's medical records.·RESULTS:The study found a significant correlation between the occurrence of CNLDO and several maternal factors,such as preeclampsia,the use of levothyroxine,hypothyroidism,having more than three pregnancies(gravidity>3),natural pregnancy,and gestational diabetes mellitus.Additionally,in children,factors,such as oxygen therapy,anemia,reflux,jaundice,and a family history of CNLDO in first-degree relatives were associated with CNLDO,and maternal preeclampsia and hypothyroidism were found to significantly increase the risk of developing CNLDO in children.·CONCLUSION:Given that CNLDO affects both premature and full-term children,the present findings may potentially facilitate the early identification of children and infants at risk of nasolacrimal duct obstruction,thereby preventing the onset of chronic dacryocystitis.
基金supported by the STI 2030-Major Projects,No. 2021ZD0200500 (to XS)。
文摘Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408).
基金Supported by the Health Technology Project of Pudong New District Health Commission,No.PW2020D-12.
文摘BACKGROUND The relationship between autoimmune gastritis(AIG)and gastric polyps(GPs)is not well understood.AIM To explore the clinical characteristics and risk factors of AIG with GPs in patients.METHODS This double center retrospective study included 530 patients diagnosed with AIG from July 2019 to July 2023.We collected clinical,biochemical,serological,and demographic data were of each patient.Logistic regression analyses,both multivariate and univariate,were conducted to pinpoint independent risk factors for GPs in patients with AIG patients.Receiver operating characteristic curves were utilized to establish the optimal cutoff values,sensitivity,and specificity of these risk factors for predicting GPs in patients with AIG.RESULTS Patients with GPs had a higher median age than those without GPs[61(52.25-69)years vs 58(47-66)years,P=0.006].The gastrin-17 levels were significantly elevated in patients with GPs compared with those without GPs[91.9(34.2-138.9)pmol/mL vs 60.9(12.6-98.4)pmol/mL,P<0.001].Additionally,the positive rate of parietal cell antibody(PCA)antibody was higher in these patients than in those without GPs(88.6%vs 73.6%,P<0.001).Multivariate and univariate analyses revealed that PCA positivity[odds ratio(OR)=2.003,P=0.017],pepsinogen II(OR=1.053,P=0.015),and enterochromaffin like cells hyperplasia(OR=3.116,P<0.001)were significant risk factors for GPs,while pepsinogen I was identified as a protective factor.CONCLUSION PCA positivity and enterochromaffin like cells hyperplasia are significant risk factor for the development of GPs in patients with AIG.Elevated gastrin-17 levels may also play a role in this process.These findings suggest potential targets for further research and therapeutic intervention in managing GPs in patients with AIG.
文摘BACKGROUND At present,the influencing factors of social function in patients with residual depressive symptoms are still unclear.Residual depressive symptoms are highly harmful,leading to low mood in patients,affecting work and interpersonal communication,increasing the risk of recurrence,and adding to the burden on families.Studying the influencing factors of their social function is of great significance.AIM To explore the social function score and its influencing factors in patients with residual depressive symptoms.METHODS This observational study surveyed patients with residual depressive symptoms(case group)and healthy patients undergoing physical examinations(control group).Participants were admitted between January 2022 and December 2023.Social functioning was assessed using the Sheehan Disability Scale(SDS),and scores were compared between groups.Factors influencing SDS scores in patients with residual depressive symptoms were analyzed by applying multiple linear regression while using the receiver operating characteristic curve,and these RESULTS The SDS scores of the 158 patients with depressive symptoms were 11.48±3.26.Compared with the control group,the SDS scores and all items in the case group were higher.SDS scores were higher in patients with relapse,discon-tinuous medication,drug therapy alone,severe somatic symptoms,obvious residual symptoms,and anxiety scores≥8.Disease history,medication compliance,therapy method,and residual symptoms correlated positively with SDS scores(r=0.354,0.414,0.602,and 0.456,respectively).Independent influencing factors included disease history,medication compliance,therapy method,somatic symptoms,residual symptoms,and anxiety scores(P<0.05).The areas under the curve for predicting social functional impairment using these factors were 0.713,0.559,0.684,0.729,0.668,and 0.628,respectively,with sensitivities of 79.2%,61.8%,76.8%,81.7%,63.6%,and 65.5%and specificities of 83.3%,87.5%,82.6%,83.3%,86.7%,and 92.1%,respectively.CONCLUSION The social function scores of patients with residual symptoms of depression are high.They are affected by disease history,medication compliance,therapy method,degree of somatic symptoms,residual symptoms,and anxiety.
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
基金Supported by Basic Science Research Program Through the National Research Foundation of Korea(NRF)Funded By the Ministry of Education,No.NRF-RS-2023-00237287.
文摘This manuscript explores the recent study by Cui et al which assessed the interplay between inflammatory cytokines and brain-derived neurotrophic factor(BDNF)levels in first-episode schizophrenia patients.The study revealed that higher levels of interleukin-6 and tumor necrosis factor-αcorrelated with reduced BDNF levels and poorer cognitive performance.Schizophrenia is a severe psy-chiatric disorder impacting approximately 1%of the global population,charac-terized by positive symptoms(hallucinations and delusions),negative symptoms(diminished motivation and cognitive impairments)and disorganized thoughts and behaviors.Emerging research highlights the role of BDNF as a potential biomarker for early diagnosis and therapeutic targeting.The findings from Cui et al’s study suggest that targeting neuroinflammation and enhancing BDNF levels may improve cognitive outcomes.Effective treatment approaches involve a com-bination of pharmacological and non-pharmacological interventions tailored to individual patient needs.Hence,monitoring cognitive and neuroinflammatory markers is essential for improving patient outcomes and quality of life.Conse-quently,this manuscript highlights the need for an integrated approach to schizo-phrenia management,considering both clinical symptoms and underlying neuro-biological changes.
文摘BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats.
基金Supported by National Key Research and Development Program of China,No.2022YFC3600903Key Discipline Project under Shanghai's Three-Year Action Plan for Strengthening the Public Health System(2023-2025),No.GWVI-11.1-44.
文摘BACKGROUND The burden of mental disorders(MD)in the Western Pacific Region(WPR)re-mains a critical public health concern,with substantial variations across demogra-phics and countries.AIM To analyze the burden of MD in the WPR from 1990 to 2021,along with associated risk factors,to reveal changing trends and emerging challenges.METHODS We used data from the Global Burden of Disease 2021,analyzing prevalence,incidence,and disability-adjusted life years(DALYs)of MD from 1990 to 2021.Statistical methods included age-standardisation and uncertainty analysis to address variations in population structure and data completeness.RESULTS Between 1990 and 2021,the prevalence of MD rose from 174.40 million cases[95%uncertainty interval(UI):160.17-189.84]to 234.90 million cases(95%UI:219.04-252.50),with corresponding DALYs increasing from 22.8 million(95%UI:17.22-28.79)to 32.07 million(95%UI:24.50-40.68).During this period,the burden of MD shifted towards older age groups.Depressive and anxiety disorders were predominant,with females showing higher DALYs for depressive and anxiety disorders,and males more affected by conduct disorders,attention-deficit hyperactivity disorder,and autism spectrum disorders.Australia,New Zealand,and Malaysia reported the highest burdens,whereas Vietnam,China,and Brunei Darussalam reported the lowest.Additionally,childhood sexual abuse and bullying,and intimate partner violence emerged as significant risk factors.CONCLUSION This study highlights the significant burden of MD in the WPR,with variations by age,gender,and nation.The coronavirus disease 2019 pandemic has exacerbated the situation,emphasizing the need for a coordinated response.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by Catalan Government,Nos.2014SGR344(to JT),2017SGR704(to JT),2021SGR01214(to MAL)MCIN/AEI/10.13039/501100011033/by“ERDF A way of making Europe,”Nos.SAF2015-67143(to JT),PID2019-106332GB-I00(to JT and MAL)and PID2022-141252NB-I00(to MAL).
文摘During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
基金The National Natural Science Foundation of China(No.50875078)the Natural Science Foundation of Jiangsu Province(No.BK2007115)the National High Technology Research and Development Program of China(863 Program)(No.2007AA04Z421)
文摘Aiming at the slow convergence and low accuracy problems of the traditional non-negative tensor factorization, a local hierarchical non-negative tensor factorization method is proposed by applying the local objective function theory to non- negative tensor factorization and combining the three semi-non- negative matrix factorization(NMF) model. The effectiveness of the method is verified by the facial feature extraction experiment. Through the decomposition of a series of an air compressor's vibration signals composed in the form of a bispectrum by this new method, the basis images representing the fault features and corresponding weight matrices are obtained. Then the relationships between characteristics and faults are analyzed and the fault types are classified by importing the weight matrices into the BP neural network. Experimental results show that the accuracy of fault diagnosis is improved by this new method compared with other feature extraction methods.