To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the...In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.展开更多
By using the explicit form of the entangled Wigner operator and the entangled state representation we derive the relationship between wave function and corresponding Wigner function for bipartite entangled systems. Th...By using the explicit form of the entangled Wigner operator and the entangled state representation we derive the relationship between wave function and corresponding Wigner function for bipartite entangled systems. The technique of integration within an ordered product (IWOP) of operators is employed in our discussions.展开更多
We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quant...We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.展开更多
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner function for the Hermite polynomial state (HP...Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner function for the Hermite polynomial state (HPS). The tomogram of the HPS is calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.展开更多
By using the technique of integration within an ordered product of operators, the normal ordered density operator of the photon-subtracted squeezed thermal state (PSSTS) is derived. Then the corresponding Wigner fun...By using the technique of integration within an ordered product of operators, the normal ordered density operator of the photon-subtracted squeezed thermal state (PSSTS) is derived. Then the corresponding Wigner function is presented by using the coherent state representation of the Wigner operator. The nonclassical properties of the PSSTS are discussed based on the negativity of the Wigner function.展开更多
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd...Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter a the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m〉o (or |β,m〉e) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.展开更多
This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates th...This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C.展开更多
Based on the Wigner function in local equilibrium, we derive hydrodynamical quantities for a system of polarized spin-1/2 particles: the particle number current density, the energy-momentum tensor, the spin tensor, an...Based on the Wigner function in local equilibrium, we derive hydrodynamical quantities for a system of polarized spin-1/2 particles: the particle number current density, the energy-momentum tensor, the spin tensor, and the dipole moment tensor. Compared with ideal hydrodynamics without spin, additional terms at the first and second orders in the Knudsen number Κ_(n) and the average spin polarization Χ_(s) have been derived. The Wigner function can be expressed in terms of matrix-valued distributions, whose equilibrium forms are characterized by thermodynamical parameters in quantum statistics. The equations of motion for these parameters are derived by conservation laws at the leading and next-to-leading order Κ_(n) and Χ_(s).展开更多
By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we...By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator.展开更多
This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, ...This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η1, η2, τ1, τ2|. The entangled states |η〉 and |η1, η2, τ1, τ2〉 provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states.展开更多
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner functions of the even and odd binomial states (EOBSs) are obtai...Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner functions of the even and odd binomial states (EOBSs) are obtained. The physical meaning of the Wigner functions for the EOBSs is given by means of their marginal distributions. Moreover, the tomograms of the EOBSs are calculated by virtue of intermediate coordinate-momentum representation in quantum optics.展开更多
For investigating dynamic evolution of a mass-varying harmonic oscillator we constitute a ket-bra integrationoperator in coherent state representation and then perform this integral by virtue of the technique of integ...For investigating dynamic evolution of a mass-varying harmonic oscillator we constitute a ket-bra integrationoperator in coherent state representation and then perform this integral by virtue of the technique of integration withinan ordered product of operators.The normally ordered time evolution operator is thus obtained.We then derive theWigner function of u(t)|n>,where |n> is a Fock state,which exhibits a generalized squeezing,the squeezing effect isrelated to the varying mass with time.展开更多
We propose a scheme for the direct measurement of Wigner function in two-mode cavity QED. The atoms are sent to resonantly interact with two orthogonally polarized cavity modes in the presence of strong classical fiel...We propose a scheme for the direct measurement of Wigner function in two-mode cavity QED. The atoms are sent to resonantly interact with two orthogonally polarized cavity modes in the presence of strong classical field. The probability of measuring the atom in the ground state directly gives the useful information of the cavity field. This method can be used for quantum non-demolition measurement of the photon number.展开更多
First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem ona commmutative space.Then we study the modifications introduced by the coordinate-coordinate noncommuting andmoment...First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem ona commmutative space.Then we study the modifications introduced by the coordinate-coordinate noncommuting andmomentum-momentum noncommuting, namely, by using a generalized Bopp’s shift method we construct the Wignerfunction for the Klein-Gordan Landau problem both on a noncommutative space (NCS) and a noncommutative phasespace (NCPS).展开更多
We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement ...We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement (QE) between two two-variable Hermite polynomials (TVHP) and the tomogram is further simplified as QE of two single-variable Hermite polynomials. The Husimi function of pair coherent state is also calculated.展开更多
In this paper, in terms of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of q-deformed annihilation and creation operators, normalizable q-analogue of ...In this paper, in terms of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of q-deformed annihilation and creation operators, normalizable q-analogue of the squeezed one-photon state, which is quite different from one introduced by Song and Fan [Int. 3. Theor. Phys. 41 (2002) 695], is constructed. Moreover, the Wigner function and phase probability distribution of q-analogue of the squeezed one-photon state are examined.展开更多
We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground st...We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.展开更多
In deformation quantization, static Wigner functions obey functional ,-genvalue equation, which is equivalent to time-independent Schrodinger equation in Hilbert space operator formalism of quantum mechanics. This equ...In deformation quantization, static Wigner functions obey functional ,-genvalue equation, which is equivalent to time-independent Schrodinger equation in Hilbert space operator formalism of quantum mechanics. This equivalence is proved mostly for Hamiltonian with form H^ = (1/2)p^2 + V(x^) [D. Fairlie, Proc. Camb. Phil. Soc. 60 (1964) 581]. In this note we generalize this proof to a very general Hamiltonian H^(x^,p^) and give examples to support it.展开更多
Based on the Wigner operator in the entangled state representation we study some new important propertiesof Wigner function for bipartite entangled systems,such as size of an entangled state,upper bound of Wigner func...Based on the Wigner operator in the entangled state representation we study some new important propertiesof Wigner function for bipartite entangled systems,such as size of an entangled state,upper bound of Wigner functions,etc.These discussions demonstrate the beauty and elegance of the entangled state representation.展开更多
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
文摘In this paper, we study the Wigner function of coherent state of N components, especially two components and three components. This function consists of two terms: the Gaussian term and the interference term with the negativity. The first term comprises N Gaussian surfaces evenly centred on a circle of radius |β| = |α| with a separate angle of 2π/N, and the second term is composed of 1/2N(N - 1) Gaussian-cosine surfaces evenly centred in a circular region of radius |β| 〈 |α|. Here, a is the eigenvalue of the annihilation operator α, and β is a variable in some complex space in which the Wigner function is defined. We have proved that the essential condition to eliminate the negativity of the Wigner function is that the mean photon count of the coherent state is equal to that of the Glouber coherent state.
基金The project supported by the Natural Science Foundation of Heze University of Shandong Province of China under Grant Nos.XY07WL01 and XY05WL01the University Experimental Technology Foundation of Shandong Province of China under Grant No.S04W138
文摘By using the explicit form of the entangled Wigner operator and the entangled state representation we derive the relationship between wave function and corresponding Wigner function for bipartite entangled systems. The technique of integration within an ordered product (IWOP) of operators is employed in our discussions.
文摘We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060) and the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09).
文摘Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner function for the Hermite polynomial state (HPS). The tomogram of the HPS is calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘By using the technique of integration within an ordered product of operators, the normal ordered density operator of the photon-subtracted squeezed thermal state (PSSTS) is derived. Then the corresponding Wigner function is presented by using the coherent state representation of the Wigner operator. The nonclassical properties of the PSSTS are discussed based on the negativity of the Wigner function.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09)
文摘Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter a the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m〉o (or |β,m〉e) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.
基金supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)
文摘This paper proves a new theorem on the relationship between optical field Wigner function's two-parameter Radon transform and optical Fresnel transform of the field, i.e., when an input field ψ (x') propagates through an optical [D (-B) (-C) A] system, the energy density of the output field is equal to the Radon transform of the Wigner function of the input field, where the Radon transform parameters are D, B. It prove this theorem in both spatial-domain and frequency-domain, in the latter case the Radon transform parameters are A, C.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 11890713, 11890710, 11947301, 11935007, 11221504,11861131009, 11890714, 11890710, and 12047528)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No. XDB34030102)。
文摘Based on the Wigner function in local equilibrium, we derive hydrodynamical quantities for a system of polarized spin-1/2 particles: the particle number current density, the energy-momentum tensor, the spin tensor, and the dipole moment tensor. Compared with ideal hydrodynamics without spin, additional terms at the first and second orders in the Knudsen number Κ_(n) and the average spin polarization Χ_(s) have been derived. The Wigner function can be expressed in terms of matrix-valued distributions, whose equilibrium forms are characterized by thermodynamical parameters in quantum statistics. The equations of motion for these parameters are derived by conservation laws at the leading and next-to-leading order Κ_(n) and Χ_(s).
基金the Natural Science Foundation of Heze University of Shandong Province of China under Grant Nos.XY07WL01 and XY05WL01the University Experimental Technology Foundation of Shandong Province of China under Grant No.S04W138
文摘By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator.
基金supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09)
文摘This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η1, η2, τ1, τ2|. The entangled states |η〉 and |η1, η2, τ1, τ2〉 provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states.
基金supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province, China (Grant No Y2008A23)
文摘Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner functions of the even and odd binomial states (EOBSs) are obtained. The physical meaning of the Wigner functions for the EOBSs is given by means of their marginal distributions. Moreover, the tomograms of the EOBSs are calculated by virtue of intermediate coordinate-momentum representation in quantum optics.
基金Supported by National Natural Science Foundation of China under Grant No.10874174
文摘For investigating dynamic evolution of a mass-varying harmonic oscillator we constitute a ket-bra integrationoperator in coherent state representation and then perform this integral by virtue of the technique of integration withinan ordered product of operators.The normally ordered time evolution operator is thus obtained.We then derive theWigner function of u(t)|n>,where |n> is a Fock state,which exhibits a generalized squeezing,the squeezing effect isrelated to the varying mass with time.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974028)the Doctoral Foundation of the Ministry of Education of China(Grant No.20093514110009)+1 种基金the Natural Science Foundation of Fujian Province of China(Grant No.2009J06002)the Funds from the State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University
文摘We propose a scheme for the direct measurement of Wigner function in two-mode cavity QED. The atoms are sent to resonantly interact with two orthogonally polarized cavity modes in the presence of strong classical field. The probability of measuring the atom in the ground state directly gives the useful information of the cavity field. This method can be used for quantum non-demolition measurement of the photon number.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10965006 and 10875035
文摘First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem ona commmutative space.Then we study the modifications introduced by the coordinate-coordinate noncommuting andmomentum-momentum noncommuting, namely, by using a generalized Bopp’s shift method we construct the Wignerfunction for the Klein-Gordan Landau problem both on a noncommutative space (NCS) and a noncommutative phasespace (NCPS).
基金Supported by the National Natural Science Foundation of China under Grant Nos.10775097 and 10874174the Research Foundation of the Education Department of Jiangxi Province
文摘We calculate Wigner function, tomogram of the pair coherent state by using its Sehmidt decomposition in the coherent state representation. It turns out that the Wigner function can be seen as the quantum entanglement (QE) between two two-variable Hermite polynomials (TVHP) and the tomogram is further simplified as QE of two single-variable Hermite polynomials. The Husimi function of pair coherent state is also calculated.
基金National Natural Science Foundation of China under Grant No.10574060the Natural Science Foundation of Shandong Province of China under Grant No.Y2004A09
文摘In this paper, in terms of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of q-deformed annihilation and creation operators, normalizable q-analogue of the squeezed one-photon state, which is quite different from one introduced by Song and Fan [Int. 3. Theor. Phys. 41 (2002) 695], is constructed. Moreover, the Wigner function and phase probability distribution of q-analogue of the squeezed one-photon state are examined.
基金国家自然科学基金,Science Research Foundation ofEducation Office of Fujian Province of China,福州大学校科研和教改项目
文摘We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.
基金supported by National Natural Science Foundation of China under Grant No.10675106
文摘In deformation quantization, static Wigner functions obey functional ,-genvalue equation, which is equivalent to time-independent Schrodinger equation in Hilbert space operator formalism of quantum mechanics. This equivalence is proved mostly for Hamiltonian with form H^ = (1/2)p^2 + V(x^) [D. Fairlie, Proc. Camb. Phil. Soc. 60 (1964) 581]. In this note we generalize this proof to a very general Hamiltonian H^(x^,p^) and give examples to support it.
基金Supported by the President Foundation of Chinese Academy of ScienceApecialized Research Fund for the Doctorial Progress of Higher EducationNational Natural Science Foundation of China under Grant Nos.10874174 and 10947017/A05
文摘Based on the Wigner operator in the entangled state representation we study some new important propertiesof Wigner function for bipartite entangled systems,such as size of an entangled state,upper bound of Wigner functions,etc.These discussions demonstrate the beauty and elegance of the entangled state representation.