The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods s...The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.展开更多
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical...This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.展开更多
A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel t...A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel time-frequency energy distribution function is obtained, which has the same time-frequency resolution as Wigner-Ville distribution and is free of cross-term interference. There is a great potential for the use of the novel time-frequency representation of nonstationary biosignal based on a wavelet network in the field of the electrophysiological signal processing and time-frequency analysis.展开更多
Wigner-Ville distribution (WVD) is recognized as being a powerful tool and a nucleus in time-frequency representation (TFR) which gives an excellent time-frequency concentration, and more importantly, has many desirab...Wigner-Ville distribution (WVD) is recognized as being a powerful tool and a nucleus in time-frequency representation (TFR) which gives an excellent time-frequency concentration, and more importantly, has many desirable properties. A major shortcoming of WVD is the inherent cross-term (CT) interference. Although solutions to this problem from the bulk of contributions to the literature concerning TFR are currently available, none has been able to completely eliminate the CT’s in WVD. It is therefore a common belief that if there exists an auxiliary time-frequency distribution (TFD) which has the same auto-terms (AT’s) as that in WVD, but has CT’s with the opposite sign, then, by adding the auxiliary TFD to WVD, an ideal TFD, which preserves the concentration of WVD while annihilating the CT’s, is readily obtained. However, we prove that the auxiliary TFD does not exist. Moreover, it is found that in general, CT free joint distributions with their concentrations close to that of WVD do not exist either.展开更多
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica...With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.展开更多
A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non...A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non-stationary signal decomposition treatment, and uses the Wigner-Ville distribution(WVD) analysis for signal reconstruction. The method presented in this study can effectively resolves the time and frequency resolution issue for non-stationary signal analysis and the cross-term issue typically encountered in time-frequency analysis.The feasibility and accuracy of the proposed method are evaluated and verified in a numerical simulation.展开更多
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
文摘The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.
文摘This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.
基金This work is Funded in part by the Science Foundation of Shandong Province (No.Y2000C25 and No.Y2001C02)
文摘A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel time-frequency energy distribution function is obtained, which has the same time-frequency resolution as Wigner-Ville distribution and is free of cross-term interference. There is a great potential for the use of the novel time-frequency representation of nonstationary biosignal based on a wavelet network in the field of the electrophysiological signal processing and time-frequency analysis.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60172026)the Basic Research Foundation of Tsinghua University (Grant No. JC2001028) and the Scientific Innovation Foundation of Ph. D. Candidates of Tsinghua Uni
文摘Wigner-Ville distribution (WVD) is recognized as being a powerful tool and a nucleus in time-frequency representation (TFR) which gives an excellent time-frequency concentration, and more importantly, has many desirable properties. A major shortcoming of WVD is the inherent cross-term (CT) interference. Although solutions to this problem from the bulk of contributions to the literature concerning TFR are currently available, none has been able to completely eliminate the CT’s in WVD. It is therefore a common belief that if there exists an auxiliary time-frequency distribution (TFD) which has the same auto-terms (AT’s) as that in WVD, but has CT’s with the opposite sign, then, by adding the auxiliary TFD to WVD, an ideal TFD, which preserves the concentration of WVD while annihilating the CT’s, is readily obtained. However, we prove that the auxiliary TFD does not exist. Moreover, it is found that in general, CT free joint distributions with their concentrations close to that of WVD do not exist either.
文摘With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.
基金the National Natural Science Foundation of China(No.61271387)the Shandong Provincial Government’s Taishan Scholar Program
文摘A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non-stationary signal decomposition treatment, and uses the Wigner-Ville distribution(WVD) analysis for signal reconstruction. The method presented in this study can effectively resolves the time and frequency resolution issue for non-stationary signal analysis and the cross-term issue typically encountered in time-frequency analysis.The feasibility and accuracy of the proposed method are evaluated and verified in a numerical simulation.