As an important plant species with high protein contents,wild soybean(Glycine soja),has drawn much attention and appeared to be useful for the genetic improvement of soybean germplasms.Since temperature is one of the ...As an important plant species with high protein contents,wild soybean(Glycine soja),has drawn much attention and appeared to be useful for the genetic improvement of soybean germplasms.Since temperature is one of the numerous environmental factors affecting the germination of most plants,an experimental study was carried out to determine the effect of temperature on germination of wild soybean(G.soja)seeds.Germination test was conducted by setting up thirty-six constant and alternating temperature regimes,ranging from 5 to 40 ℃(16 h night/8 h day).Responses in germination rate to these temperature regimes were then used to construct a quadratic response surface,giving estimated germination rates with confidence intervals at P ≤ 0.05.The results showed that germination capacity was significantly greater while exposed to constant temperatures of 25 ℃,and under the alternating temperature regime the optimum temperature occurred at the 20/25,25/25,25/30 ℃ regime(16 h/8 h)with the amplitude widened from 0 to 5 ℃.Together with regional monthly climate data,these results could be used to improve and promote the cultivation of wild soybean(G.soja),making it available to develop the location-specific optimum seeding time and to apply weed-control treatments.展开更多
With more than 6000 accessions collected from across China, the Chinese National Crop Gene Bank (CNCGB) holds the largest collection of annual wild soybean (Glycine Soja) germplasm in the world. To facilitate the mana...With more than 6000 accessions collected from across China, the Chinese National Crop Gene Bank (CNCGB) holds the largest collection of annual wild soybean (Glycine Soja) germplasm in the world. To facilitate the management and utilization of these germplasm collections, it is important to establish a Core Collection. This study compares five sampling strategies, namely random, constant, proportional, logarithmic and genetic diversity-based, to establish a Core Collection for the annual wild soybean germplasm. Among the strategies evaluated, the genetic di- versity-based was found to be the simplest and most efficient. Using hierarchical classification and cluster analysis, in the genetic diversity diversity-based strategy, 652 accessions, accounting for 10.65% of the total 6172 accessions, were se- lected out to represent the total accessions. The established Core Collection has the following features: (i) the 21 de- scriptors observed in the entire collection were compared by the Core Collection, all 18 quality characters of entire collec- tion were preserved by core collection, and coincidence rate of average was 98.4%; (ii) the variant of 13 descriptors of the two collections was very similar, with the coincidence index being 0.96; (iii) the coincidence rate of genetic diversity be- tween the two collections was 81.38% DNA alleles; (iv) the geographic distribution pattern of core collection was the same as the entire collection; (v) molecular marker analysis by 20 SSR primer pairs on 299 accessions showed that the Core Collection covered 83.64% of the entire collection. It thus is concluded that the established Core Collection is rep- resentative and will be a valuable entry point for better evaluation and more efficient utilization of the genetic re- sources available in the annual wild soybean germplasm bank.展开更多
The circadian rhythms of apical meristem mitosis cells of the two types of soybean were investigated: wild soybeans - Glycine max (L.) Merr. (G. hispida Max.), G. soja Sieb., and Zucc (G, ussuriensis Reg. and Ma...The circadian rhythms of apical meristem mitosis cells of the two types of soybean were investigated: wild soybeans - Glycine max (L.) Merr. (G. hispida Max.), G. soja Sieb., and Zucc (G, ussuriensis Reg. and Maack); and the hybrids of their homozygous forms (F6). Representatives of the initial kinds and interspecific hybrids for reproduction were grown up in comparable conditions. Seeds of a soybean were grown up at 24℃ in Petri cups in thermostat in darkness during winter. For research of mitotic meristem cages activity the tips of roots were fixed temporal by acetoalcohol (fractional fixing) from 1 p.m. till 12 a.m., further up to 12 p.m. each 60 minutes. Acetokarmin was used for preparing the coloring. For researching of mitotic indexes, there have been analyzed from 6 up to 10 thousand cells at each stage (during each moment of time: 01 hour, 02, 03 06 ... 12, 13 ... 18 hours and further). Within a day (day + night) in cells of root apical meristem, three mitosis "waves" in each of the investigated forms with an absolute starting point of rest at 12 p.m., with precisely expressed further periodicity were found out. Each of the investigated forms misses in character of wave processes, on a degree of increase and recession of mitosis waves, on the level of mitotic indexes. Maximal mitotic activity at all the investigated forms is noted at 6 and 12 a.m. and 6 p.m.展开更多
The knowledge of origin and evolution of cultivated soybeans is one of the basic issues in both biology and agronomy of the crop. In order to investigate the nuclear and cytoplasmic genetic diversity, geographic diffe...The knowledge of origin and evolution of cultivated soybeans is one of the basic issues in both biology and agronomy of the crop. In order to investigate the nuclear and cytoplasmic genetic diversity, geographic differentiation and genetic relationship among geographic ecotypes of cultivated (Glycine max) and wild (G. soja) soybeans, the allelic profiles at 60 nuclear simple-sequence repeat (nuSSR) loci and 11 chloroplastic SSR (cpSSR) loci evenly distributed on whole genome of 393 landraces and 196 wild accessions from nation-wide growing areas in China were analyzed. (i) The genetic diversity of the wild soybean was obviously larger than that of the cultivated soybean, with their nuSSR and cpSSR alleles as 1067 vs. 980 and 57 vs 44, respectively. Of the 980 nuclear alleles detected in the cultivated soybean, 377 new ones (38.5%) emerged, while of the 44 chloroplastic alleles in the cultivated soybean, seven new ones (15.9%) emerged after domestication. (ii) Among the cultivated geographic ecotypes, those from southern China, including South-Central China, Southwest China and South China possessed relatively great genetic diversity than those from northern China, while among the wild geographic ecotypes, the Middle and Lower Changjiang Valleys wild ecotype showed the highest genetic diversity. (iii) The analysis of molecular variance, association analysis between geographic grouping and molecular marker clustering and analysis of specific-present alleles of ecotypes demonstrated that the geographic differentiation of both cultivated and wild soybeans associated with their genetic differentiation, or in other words, had their relevant genetic bases. (iv) The cluster analysis of all accessions clearly showed that the wild accessions from Middle and Lower Changjiang Valleys and South-Central & Southwest China had relatively small genetic distances with all cultivated accessions. The UPGMA dendrogram among geographic ecotypes further showed that the genetic distances between all cultivated ecotypes and the Middle and Lower Changjiang Valleys wild ecotype were smaller than those with other wild ones, including their local wild counterparts. Therefore, it is inferred that the wild ancestors in southern China, especially those from Middle and Lower Changjiang Valleys might be the common ancestor of all the cultivated soybeans.展开更多
关联作图是一种利用连锁不平衡(linkage disequilibrium,LD)检测自然群体中基因位点及其等位变异的方法。利用60个SSR标记,对全国大豆地方品种群体(393份代表性材料)和野生大豆群体(196份代表性材料)的基因组变异进行扫描,分析两类群体...关联作图是一种利用连锁不平衡(linkage disequilibrium,LD)检测自然群体中基因位点及其等位变异的方法。利用60个SSR标记,对全国大豆地方品种群体(393份代表性材料)和野生大豆群体(196份代表性材料)的基因组变异进行扫描,分析两类群体的连锁不平衡位点、群体结构,并采用TASSEL软件的GLM(general linear model)方法对16个农艺、品质性状观测值进行标记与性状的关联分析。结果表明:(1)在公共图谱上不论共线性的或是非共线性的SSR位点组合都有一定程度的LD,说明历史上发生过连锁群间的重组;栽培群体的连锁不平衡成对位点数较野生群体多,但野生群体位点间连锁不平衡程度高,随距离的衰减慢。(2)群体SSR数据遗传结构分析发现,栽培群体和野生群体分别由9和4个亚群体组成,亚群的划分与群体地理生态类型相关联,证实地理生态类型划分有其遗传基础。(3)栽培群体中累计有27个位点与性状相关;野生大豆种质中累计有34个位点与性状相关。部分标记在两类群体中都表现与同一性状关联,检出的位点有一致性,也有互补性;一些标记同时与2个或多个性状相关联,可能是性状相关乃至一因多效的遗传基础;关联位点中累计有24位点(次)与遗传群体连锁分析定位的QTL一致。展开更多
选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴...选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明:(1)累计51个位点(次)与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点(次)与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。展开更多
【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb.et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max(L.)Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改...【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb.et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max(L.)Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改进以野生大豆N24852为供体,栽培大豆NN1138-2为受体的染色体片段代换系(CSSL)群体Soja CSSLP1;对改进后的群体(Soja CSSLP2)进行3年2点田间试验,通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等4种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与大豆开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的野生片段。【结果】改进后的群体(Soja CSSLP2)由150个CSSL构成,其中,有130个家系与Soja CSSLP1相同;在原遗传图谱上,新增40个SSR标记,相邻标记间平均遗传距离由16.15 c M变为12.91 c M,大于20 c M的区段由32个减少至17个,标记覆盖遗传距离总长度较原图谱(2 063.04 c M)增加103.52 c M;群体NN1138-2背景回复率变幅为79.45%—99.70%,平均为94.62%。利用Soja CSSLP2群体,分别鉴定到与开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的4、5、5、7、14和3个工作QTL(working QTL)/片段,其中有15个工作QTL/片段能在多个环境下检测到,属共性工作QTL(joint working QTL);除片段Sct_190—Sat_293上的主茎节数位点外,野生等位变异具有的加性效应方向与双亲表型差异方向一致;单个位点分别能解释5%—64%的表型变异;同时,分别检测到3、2和2个与地点存在互作的株高、主茎节数和单株荚数QTL/片段,其中与凤阳环境的互作均具有增加表型的效应,这可能与凤阳较南京所处纬度高有关;这些位点/片段分布在26个染色体片段上,其中有7个片段与2个及以上性状相关,可能是性状相关的遗传基础;与前人结果比较,有3个开花期、3个株高、2个主茎节数、2个单株荚数、8个百粒重、2个单株粒重位点能在其他遗传背景栽培大豆中检测到,说明在这些位点上野生大豆和栽培大豆间及栽培大豆间均存在遗传差异;另外18个位点(片段)为本研究利用野生大豆的新发现。【结论】大豆开花期、株高和主茎节数的遗传基础较百粒重简单,前者均存在效应较大位点/片段,后者多由小效应位点控制,遗传基础极为复杂;野生大豆中蕴藏着新的等位变异,能拓宽栽培大豆遗传基础。展开更多
基金supported by the fund of Jinhua Science Technology Foundation of China(2009-2-02)
文摘As an important plant species with high protein contents,wild soybean(Glycine soja),has drawn much attention and appeared to be useful for the genetic improvement of soybean germplasms.Since temperature is one of the numerous environmental factors affecting the germination of most plants,an experimental study was carried out to determine the effect of temperature on germination of wild soybean(G.soja)seeds.Germination test was conducted by setting up thirty-six constant and alternating temperature regimes,ranging from 5 to 40 ℃(16 h night/8 h day).Responses in germination rate to these temperature regimes were then used to construct a quadratic response surface,giving estimated germination rates with confidence intervals at P ≤ 0.05.The results showed that germination capacity was significantly greater while exposed to constant temperatures of 25 ℃,and under the alternating temperature regime the optimum temperature occurred at the 20/25,25/25,25/30 ℃ regime(16 h/8 h)with the amplitude widened from 0 to 5 ℃.Together with regional monthly climate data,these results could be used to improve and promote the cultivation of wild soybean(G.soja),making it available to develop the location-specific optimum seeding time and to apply weed-control treatments.
基金This study was supported by the National Natural Science Foundational of China(Grant Nos.30370890&30490250)National Transgenic Plant Grant(No.JY03-B-16)the National Funds for Distinguished Young Scholars of China(No.30225003).
文摘With more than 6000 accessions collected from across China, the Chinese National Crop Gene Bank (CNCGB) holds the largest collection of annual wild soybean (Glycine Soja) germplasm in the world. To facilitate the management and utilization of these germplasm collections, it is important to establish a Core Collection. This study compares five sampling strategies, namely random, constant, proportional, logarithmic and genetic diversity-based, to establish a Core Collection for the annual wild soybean germplasm. Among the strategies evaluated, the genetic di- versity-based was found to be the simplest and most efficient. Using hierarchical classification and cluster analysis, in the genetic diversity diversity-based strategy, 652 accessions, accounting for 10.65% of the total 6172 accessions, were se- lected out to represent the total accessions. The established Core Collection has the following features: (i) the 21 de- scriptors observed in the entire collection were compared by the Core Collection, all 18 quality characters of entire collec- tion were preserved by core collection, and coincidence rate of average was 98.4%; (ii) the variant of 13 descriptors of the two collections was very similar, with the coincidence index being 0.96; (iii) the coincidence rate of genetic diversity be- tween the two collections was 81.38% DNA alleles; (iv) the geographic distribution pattern of core collection was the same as the entire collection; (v) molecular marker analysis by 20 SSR primer pairs on 299 accessions showed that the Core Collection covered 83.64% of the entire collection. It thus is concluded that the established Core Collection is rep- resentative and will be a valuable entry point for better evaluation and more efficient utilization of the genetic re- sources available in the annual wild soybean germplasm bank.
文摘The circadian rhythms of apical meristem mitosis cells of the two types of soybean were investigated: wild soybeans - Glycine max (L.) Merr. (G. hispida Max.), G. soja Sieb., and Zucc (G, ussuriensis Reg. and Maack); and the hybrids of their homozygous forms (F6). Representatives of the initial kinds and interspecific hybrids for reproduction were grown up in comparable conditions. Seeds of a soybean were grown up at 24℃ in Petri cups in thermostat in darkness during winter. For research of mitotic meristem cages activity the tips of roots were fixed temporal by acetoalcohol (fractional fixing) from 1 p.m. till 12 a.m., further up to 12 p.m. each 60 minutes. Acetokarmin was used for preparing the coloring. For researching of mitotic indexes, there have been analyzed from 6 up to 10 thousand cells at each stage (during each moment of time: 01 hour, 02, 03 06 ... 12, 13 ... 18 hours and further). Within a day (day + night) in cells of root apical meristem, three mitosis "waves" in each of the investigated forms with an absolute starting point of rest at 12 p.m., with precisely expressed further periodicity were found out. Each of the investigated forms misses in character of wave processes, on a degree of increase and recession of mitosis waves, on the level of mitotic indexes. Maximal mitotic activity at all the investigated forms is noted at 6 and 12 a.m. and 6 p.m.
基金Supported by the National Natural Science Foundation of China (Grant No. 32671266)National Key Basic Research and Development Program of China (Grant Nos. 2006CB101708 and 2009CB118404)+2 种基金Key Projects in the National Science & Technology Pillar Program (Grant No. 2006BAD13B05-7)Special Public Sector Research of the Ministry of Agriculture (Grant No. 200803060)Programme of Introducing Talents of Discipline to Universities (111 Project) (Grant No. B08025)
文摘The knowledge of origin and evolution of cultivated soybeans is one of the basic issues in both biology and agronomy of the crop. In order to investigate the nuclear and cytoplasmic genetic diversity, geographic differentiation and genetic relationship among geographic ecotypes of cultivated (Glycine max) and wild (G. soja) soybeans, the allelic profiles at 60 nuclear simple-sequence repeat (nuSSR) loci and 11 chloroplastic SSR (cpSSR) loci evenly distributed on whole genome of 393 landraces and 196 wild accessions from nation-wide growing areas in China were analyzed. (i) The genetic diversity of the wild soybean was obviously larger than that of the cultivated soybean, with their nuSSR and cpSSR alleles as 1067 vs. 980 and 57 vs 44, respectively. Of the 980 nuclear alleles detected in the cultivated soybean, 377 new ones (38.5%) emerged, while of the 44 chloroplastic alleles in the cultivated soybean, seven new ones (15.9%) emerged after domestication. (ii) Among the cultivated geographic ecotypes, those from southern China, including South-Central China, Southwest China and South China possessed relatively great genetic diversity than those from northern China, while among the wild geographic ecotypes, the Middle and Lower Changjiang Valleys wild ecotype showed the highest genetic diversity. (iii) The analysis of molecular variance, association analysis between geographic grouping and molecular marker clustering and analysis of specific-present alleles of ecotypes demonstrated that the geographic differentiation of both cultivated and wild soybeans associated with their genetic differentiation, or in other words, had their relevant genetic bases. (iv) The cluster analysis of all accessions clearly showed that the wild accessions from Middle and Lower Changjiang Valleys and South-Central & Southwest China had relatively small genetic distances with all cultivated accessions. The UPGMA dendrogram among geographic ecotypes further showed that the genetic distances between all cultivated ecotypes and the Middle and Lower Changjiang Valleys wild ecotype were smaller than those with other wild ones, including their local wild counterparts. Therefore, it is inferred that the wild ancestors in southern China, especially those from Middle and Lower Changjiang Valleys might be the common ancestor of all the cultivated soybeans.
文摘关联作图是一种利用连锁不平衡(linkage disequilibrium,LD)检测自然群体中基因位点及其等位变异的方法。利用60个SSR标记,对全国大豆地方品种群体(393份代表性材料)和野生大豆群体(196份代表性材料)的基因组变异进行扫描,分析两类群体的连锁不平衡位点、群体结构,并采用TASSEL软件的GLM(general linear model)方法对16个农艺、品质性状观测值进行标记与性状的关联分析。结果表明:(1)在公共图谱上不论共线性的或是非共线性的SSR位点组合都有一定程度的LD,说明历史上发生过连锁群间的重组;栽培群体的连锁不平衡成对位点数较野生群体多,但野生群体位点间连锁不平衡程度高,随距离的衰减慢。(2)群体SSR数据遗传结构分析发现,栽培群体和野生群体分别由9和4个亚群体组成,亚群的划分与群体地理生态类型相关联,证实地理生态类型划分有其遗传基础。(3)栽培群体中累计有27个位点与性状相关;野生大豆种质中累计有34个位点与性状相关。部分标记在两类群体中都表现与同一性状关联,检出的位点有一致性,也有互补性;一些标记同时与2个或多个性状相关联,可能是性状相关乃至一因多效的遗传基础;关联位点中累计有24位点(次)与遗传群体连锁分析定位的QTL一致。
文摘选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明:(1)累计51个位点(次)与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点(次)与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。
文摘【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb.et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max(L.)Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改进以野生大豆N24852为供体,栽培大豆NN1138-2为受体的染色体片段代换系(CSSL)群体Soja CSSLP1;对改进后的群体(Soja CSSLP2)进行3年2点田间试验,通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等4种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与大豆开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的野生片段。【结果】改进后的群体(Soja CSSLP2)由150个CSSL构成,其中,有130个家系与Soja CSSLP1相同;在原遗传图谱上,新增40个SSR标记,相邻标记间平均遗传距离由16.15 c M变为12.91 c M,大于20 c M的区段由32个减少至17个,标记覆盖遗传距离总长度较原图谱(2 063.04 c M)增加103.52 c M;群体NN1138-2背景回复率变幅为79.45%—99.70%,平均为94.62%。利用Soja CSSLP2群体,分别鉴定到与开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的4、5、5、7、14和3个工作QTL(working QTL)/片段,其中有15个工作QTL/片段能在多个环境下检测到,属共性工作QTL(joint working QTL);除片段Sct_190—Sat_293上的主茎节数位点外,野生等位变异具有的加性效应方向与双亲表型差异方向一致;单个位点分别能解释5%—64%的表型变异;同时,分别检测到3、2和2个与地点存在互作的株高、主茎节数和单株荚数QTL/片段,其中与凤阳环境的互作均具有增加表型的效应,这可能与凤阳较南京所处纬度高有关;这些位点/片段分布在26个染色体片段上,其中有7个片段与2个及以上性状相关,可能是性状相关的遗传基础;与前人结果比较,有3个开花期、3个株高、2个主茎节数、2个单株荚数、8个百粒重、2个单株粒重位点能在其他遗传背景栽培大豆中检测到,说明在这些位点上野生大豆和栽培大豆间及栽培大豆间均存在遗传差异;另外18个位点(片段)为本研究利用野生大豆的新发现。【结论】大豆开花期、株高和主茎节数的遗传基础较百粒重简单,前者均存在效应较大位点/片段,后者多由小效应位点控制,遗传基础极为复杂;野生大豆中蕴藏着新的等位变异,能拓宽栽培大豆遗传基础。