This study investigates the flow and heat transfer of dusty Williamson (MHD) Nanofluid flow over a stretching permeable cylinder in a porous medium. Dusty Williamson Nanofluid was considered due to its thermal propert...This study investigates the flow and heat transfer of dusty Williamson (MHD) Nanofluid flow over a stretching permeable cylinder in a porous medium. Dusty Williamson Nanofluid was considered due to its thermal properties and potential benefits of increasing the heat transfer rate. Firstly, partial differential equations are transformed into coupled non-linear ordinary differential equations through a similarity variables transformation. The resulting set of dimensionless equations is solved analytically by using the Homogony Perturbation Method (HPM). The effects of the emerging parameters on the velocity and temperature profiles as well as skin-friction coefficient and Nusselt number are publicized through tables and graphs with appropriate discussions. The present result has been compared with published papers and found to be in agreement. To the best of author’s knowledge, there has been sparse research work in the literature that considers the effect of dust with Williamson Nanofluid and also solving the problem analytically. Therefore to the best of author’s knowledge, this is the first time analytical solution has been established for the problem. The results revealed that the fluid velocity of both the fluid and dust phases decreases as the Williamson parameter increases. Motivated by the above limitations and the gaps in past works, therefore, it is hoped that the present work will assist in providing accurate solutions to many practical problems in science, industry and engineering.展开更多
利用碱处理结合柠檬酸处理技术对商业微孔ZSM-5分子筛改性,制备了多级孔ZSM-5分子筛催化剂(ZSM-5-AT-CA)。利用XRD、N_(2)吸脱附、NH_(3)-TPD、Py-IR、^(27)Al MAS NMR等表征技术研究了ZSM-5-AT-CA催化剂的形貌结构和物理化学性质,以5-...利用碱处理结合柠檬酸处理技术对商业微孔ZSM-5分子筛改性,制备了多级孔ZSM-5分子筛催化剂(ZSM-5-AT-CA)。利用XRD、N_(2)吸脱附、NH_(3)-TPD、Py-IR、^(27)Al MAS NMR等表征技术研究了ZSM-5-AT-CA催化剂的形貌结构和物理化学性质,以5-羟甲基糠醛(HMF)自醚化制双-(5-甲酰基糠基)醚(OBMF)为模型反应进一步考察其催化性能。结果表明,ZSM-5-AT-CA催化剂具有多级孔结构(微孔、介孔)、适宜酸位点浓度和强度,有利于HMF自醚化反应。多级孔ZSM-5-AT-CA催化剂在反应温度90℃时HMF转化率达到91.2%,OBMF产率为73.6%。催化剂具有良好的循环稳定性。展开更多
文摘This study investigates the flow and heat transfer of dusty Williamson (MHD) Nanofluid flow over a stretching permeable cylinder in a porous medium. Dusty Williamson Nanofluid was considered due to its thermal properties and potential benefits of increasing the heat transfer rate. Firstly, partial differential equations are transformed into coupled non-linear ordinary differential equations through a similarity variables transformation. The resulting set of dimensionless equations is solved analytically by using the Homogony Perturbation Method (HPM). The effects of the emerging parameters on the velocity and temperature profiles as well as skin-friction coefficient and Nusselt number are publicized through tables and graphs with appropriate discussions. The present result has been compared with published papers and found to be in agreement. To the best of author’s knowledge, there has been sparse research work in the literature that considers the effect of dust with Williamson Nanofluid and also solving the problem analytically. Therefore to the best of author’s knowledge, this is the first time analytical solution has been established for the problem. The results revealed that the fluid velocity of both the fluid and dust phases decreases as the Williamson parameter increases. Motivated by the above limitations and the gaps in past works, therefore, it is hoped that the present work will assist in providing accurate solutions to many practical problems in science, industry and engineering.
文摘利用碱处理结合柠檬酸处理技术对商业微孔ZSM-5分子筛改性,制备了多级孔ZSM-5分子筛催化剂(ZSM-5-AT-CA)。利用XRD、N_(2)吸脱附、NH_(3)-TPD、Py-IR、^(27)Al MAS NMR等表征技术研究了ZSM-5-AT-CA催化剂的形貌结构和物理化学性质,以5-羟甲基糠醛(HMF)自醚化制双-(5-甲酰基糠基)醚(OBMF)为模型反应进一步考察其催化性能。结果表明,ZSM-5-AT-CA催化剂具有多级孔结构(微孔、介孔)、适宜酸位点浓度和强度,有利于HMF自醚化反应。多级孔ZSM-5-AT-CA催化剂在反应温度90℃时HMF转化率达到91.2%,OBMF产率为73.6%。催化剂具有良好的循环稳定性。