期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A CONJECTURE CONCERNING THE HADAMARD PRODUCT OF INVERSE M-MATRICES
1
作者 Zhou Yuzhong(Dept.of Math.,South China Normal University,Guangzhou 510631,PRC) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第S1期113-114,共2页
1 IntroductionFor an n×n matrix A which is an inverse M-matrix,M.Neumann in [1]conjecturedthat the Hadamard product A·A is an inverse of an M-matrix.They have checked hisconjecture without failure on Ultrame... 1 IntroductionFor an n×n matrix A which is an inverse M-matrix,M.Neumann in [1]conjecturedthat the Hadamard product A·A is an inverse of an M-matrix.They have checked hisconjecture without failure on Ultrametric matrices and inverse of MMA-matrices,Uni-pathicmatrices and the Willongby inverse M-matrices.Bo-Ying Wang et al.in[2]haveinvestigated Triangular inverse M-matrices which are closed under the Hadamard multipli-cation.Lu Linzheng,Sun Weiwei and Li Wen in[3]presented a more general 展开更多
关键词 WANG A CONJECTURE CONCERNING THE HADAMARD PRODUCT OF inverse m-matrices ZHANG MORE
下载PDF
STRUCTURES OF CIRCULANT INVERSE M-MATRICES
2
作者 Yurui Lin Linzhang Lu 《Journal of Computational Mathematics》 SCIE EI CSCD 2007年第5期553-560,共8页
In this paper, we present a useful result on the structures of circulant inverse Mmatrices. It is shown that if the n × n nonnegative circulant matrix A = Circ[c0, c1,… , c(n- 1)] is not a positive matrix and ... In this paper, we present a useful result on the structures of circulant inverse Mmatrices. It is shown that if the n × n nonnegative circulant matrix A = Circ[c0, c1,… , c(n- 1)] is not a positive matrix and not equal to c0I, then A is an inverse M-matrix if and only if there exists a positive integer k, which is a proper factor of n, such that cjk 〉 0 for j=0,1…, [n-k/k], the other ci are zero and Circ[co, ck,… , c(n-k)] is an inverse M-matrix. The result is then extended to the so-called generalized circulant inverse M-matrices. 展开更多
关键词 Nonnegative matrices Circulant matrix inverse m-matrices.
原文传递
关于逆M-矩阵Hadamard积的一个猜想 被引量:1
3
作者 周裕中 方平 张昕 《江西师范大学学报(自然科学版)》 CAS 北大核心 2008年第4期399-402,共4页
对一个n×n逆M-矩阵A,M.Neumann猜想其Hadamard积■ A也是逆M-矩阵.通过许多例子验证,它们都是正确的.迄今为止,猜想未被证出.该文研究了该猜想,给出了一类不同的逆M-矩阵,验证Hadamard积■ A与■ B都是封闭的.进一步验证了猜想:当p... 对一个n×n逆M-矩阵A,M.Neumann猜想其Hadamard积■ A也是逆M-矩阵.通过许多例子验证,它们都是正确的.迄今为止,猜想未被证出.该文研究了该猜想,给出了一类不同的逆M-矩阵,验证Hadamard积■ A与■ B都是封闭的.进一步验证了猜想:当p≥1,A及任意Ai(i=1,2,…,N-1,N)是逆M-矩阵时,Hadamard幂■ p=(aipj),■∞=(aij∞),Hadamard积■■…oAN都是封闭的. 展开更多
关键词 M-矩阵 逆M-矩阵 HADAMARD积 Ultrametric矩阵 willongby逆M-矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部