The statistical character of QuikSCAT scatterometer winds is showed. And Monthly change and special distribution character of strong wind frequency and monthly wind fields in South China Sea is analyzed. It is shown i...The statistical character of QuikSCAT scatterometer winds is showed. And Monthly change and special distribution character of strong wind frequency and monthly wind fields in South China Sea is analyzed. It is shown in the result that the QuikSCAT scatterometer winds can be relied upon for the South China Sea; two winds, one the wintertime northeasterly and the other summertime southwesterly. The northeasterly centers at the Bashi Strait and Taiwam Strait and its secondary center and the maximum center of the southwesterly are in the central and southern South China Sea.展开更多
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N-39 °N, 105...Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N-39 °N, 105°E-130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to E1 Nifio events. The temporal mode of VEOF-2 is in good agreement with the curve of the Nifio 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an E1 Nifio event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when E1 Nifio occurs in winter. If E1 Nifio happens in summer, the reverse is true.展开更多
基金Key Scientific Project of Guangdong province Comprehensive application of satellite data in the monitoring and forecast of marine meteorology (99M05002G) Science and Technology Planning Project of Guangdong province Research on pre-warning techniques
文摘The statistical character of QuikSCAT scatterometer winds is showed. And Monthly change and special distribution character of strong wind frequency and monthly wind fields in South China Sea is analyzed. It is shown in the result that the QuikSCAT scatterometer winds can be relied upon for the South China Sea; two winds, one the wintertime northeasterly and the other summertime southwesterly. The northeasterly centers at the Bashi Strait and Taiwam Strait and its secondary center and the maximum center of the southwesterly are in the central and southern South China Sea.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX1-YW-12, KZCXZ-YW201)National Natural Science Foundation of China (No. 90411013)
文摘Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N-39 °N, 105°E-130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to E1 Nifio events. The temporal mode of VEOF-2 is in good agreement with the curve of the Nifio 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an E1 Nifio event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when E1 Nifio occurs in winter. If E1 Nifio happens in summer, the reverse is true.