Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases,wake interference between turbines becomes increasingly significant, especially for floating wind...Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases,wake interference between turbines becomes increasingly significant, especially for floating wind turbines(FWT).Some researchers find that wind farms with multiple hub heights could increase the annual energy production(AEP),while previous studies also indicate that wake meandering could increase fatigue loading. This study investigates the wake interaction within a hybrid floating wind farm with multiple hub heights. In this study, FAST.Farm is employed to simulate a hybrid wind farm which consists of four semi-submersible FWTs(5MW and 15MW) with two different hub heights. Three typical wind speeds(below-rated, rated, and over-rated) are considered in this paper to investigate the wake meandering effects on the dynamics of two FWTs. Damage equivalent loads(DEL) of the turbine critical components are computed and analyzed for several arrangements determined by the different spacing of the four turbines. The result shows that the dynamic wake meandering significantly affects downstream turbines’ global loadings and load effects. Differences in DEL show that blade-root flapwise bending moments and mooring fairlead tensions are sensitive to the spacing of the turbines.展开更多
The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental...The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental variables as independent is conservative.In the present study,we introduce a bivariate sample consisting of the maximum wave heights and concomitant wind speeds of the threshold by using the peak-over-threshold and declustering methods.After selecting the appropriate bivariate copulas and univariate distributions and blocking the sample into years,the bivariate compound distribution of annual extreme wave heights and concomitant wind speeds is constructed.Two joint design criteria,namely,the joint probability density method and the conditional probability method,are applied to obtain the joint return values of significant wave heights and wind speeds.Results show that(28.5±0.5)m s^(-1)is the frequently obtained wind speed based on the Atlantic dataset,and these joint design values are more appropriate than those calculated by univariate analysis in the fatigue design.展开更多
In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), wh...In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), which was simulated and computed using the WAVEWATCH Ⅲ(WW3) model. The monthly variations of these parameters showed that the significant wave height and wind speed have minimum values of 0.73 m and 5.15 ms^(-1) and 1.73 m and 8.24 ms^(-1) in the month of May and December, respectively. The annual, seasonal, and monthly mean sea state characterizations showed that the slight sea generally prevailed in the ECS and had nearly the highest occurrence in all seasons and months. Additionally, the moderate sea prevailed in the winter months of December and January, while the smooth(wavelets) sea prevailed in May. Furthermore, the spatial variation of sea states showed that the calm and smooth sea had the largest occurrences in the northern ECS. The slight sea occurred mostly(above 30%) in parts of the ECS and the surrounding locations, while higher occurrences of the rough and very rough seas were distributed in waters between the southwest ECS and the northeast South China Sea(SCS). The occurrences of the phenomenal sea conditions are insignificant and are distributed in the northwest Pacific and its upper region, which includes the Southern Kyushu-Palau Ridge and Ryukyu Trench.展开更多
Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource ex...Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.展开更多
Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads an...Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint return periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.展开更多
In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, c...In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, conducted contrast numerical experiments of assimilating the CDW data before and after reassignment to examine the impacts on the forecast of the track of Typhoon Chanthu(1003) from 00:00(Coordinated Universal Time) 21 July to 00:00 UTC23 July, 2010. The analysis results of the CDW data indicate that the number of CDWs is mainly distributed in the midand upper-troposphere above 500 h Pa, with the maximum number at about 300 h Pa. The height reassigning method mentioned in this work may update the height effectively, and the CDW data are distributed reasonably and no obvious contradiction occurs in the horizontal direction after height reassignment. After assimilating the height-reassigned CDW data, especially the water vapor CDW data, the initial wind field around Typhoon Chanthu(1003) became more reasonable, and then the steering current leading the typhoon to move to the correct location became stronger. As a result, the numerical track predictions are improved.展开更多
Wind and wave data are essential in climatological and engineering design applications.In this study,data from 15 buoys located throughout the South China Sea(SCS)were used to evaluate the ERA5 wind and wave data.Appl...Wind and wave data are essential in climatological and engineering design applications.In this study,data from 15 buoys located throughout the South China Sea(SCS)were used to evaluate the ERA5 wind and wave data.Applicability assessment are beneficial for gaining insight into the reliability of the ERA5 data in the SCS.The bias range between the ERA5 and observed wind-speed data was-0.78-0.99 m/s.The result indicates that,while the ERA5 wind-speed data underestimation was dominate,the overestimation of such data existed as well.Additionally,the ERA5 data underestimated annual maximum wind-speed by up to 38%,with a correlation coefficient>0.87.The bias between the ERA5 and observed significant wave height(SWH)data varied from-0.24 to 0.28 m.And the ERA5 data showed positive SWH bias,which implied a general underestimation at all locations,except those in the Beibu Gulf and centralwestern SCS,where overestimation was observed.Under extreme conditions,annual maximum SWH in the ERA5 data was underestimated by up to 30%.The correlation coefficients between the ERA5 and observed SWH data at all locations were greater than 0.92,except in the central-western SCS(0.84).The bias between the ERA5 and observed mean wave period(MWP)data varied from-0.74 to 0.57 s.The ERA5 data showed negative MWP biases implying a general overestimation at all locations,except for B1(the Beibu Gulf)and B7(the northeastern SCS),where underestimation was observed.The correlation coefficient between the ERA5 and observed MWP data in the Beibu Gulf was the smallest(0.56),and those of other locations fluctuated within a narrow range from 0.82 to 0.90.The intercomparison indicates that during the analyzed time-span,the ERA5 data generally underestimated wind-speed and SWH,but overestimated MWP.Under non-extreme conditions,the ERA5 wind-speed and SWH data can be used with confidence in most regions of the SCS,except in the central-western SCS.展开更多
Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution f...Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.展开更多
The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically...The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.展开更多
A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. ...A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. The height-height correlations calculated using daily data of four July months (1976-1979), are used to derive the other autocorrelations and cross-correlations assuming geostropic relationship. A Gaussian function is used to model the autocorrelation function. Since the scheme is multivariate the regression coefficients (weights) are matrix.Near the equator, the geostrophic approximation relating mass and wind is decoupled in a way similar to Bergman (1979). The objective analyses were made over Indian and adjoining region for 850, 700, 500, 300 and 200 hPa levels for the period from 4 July to 8 July 1979, 12 GMT. The analyses obtained using multivariate optimum interpolation scheme depict the synoptic situations satisfactorily. The analyses were also compared with the FGGE analyses (from ECMWF) and also with the station observations by computing the root mean square (RMS) errors and the RMS errors are comparable with those obtained in other similar studies.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51909109 and 52101314)the Natural Science Foundation of Jiangsu Province (Grant No.BK20190967)。
文摘Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases,wake interference between turbines becomes increasingly significant, especially for floating wind turbines(FWT).Some researchers find that wind farms with multiple hub heights could increase the annual energy production(AEP),while previous studies also indicate that wake meandering could increase fatigue loading. This study investigates the wake interaction within a hybrid floating wind farm with multiple hub heights. In this study, FAST.Farm is employed to simulate a hybrid wind farm which consists of four semi-submersible FWTs(5MW and 15MW) with two different hub heights. Three typical wind speeds(below-rated, rated, and over-rated) are considered in this paper to investigate the wake meandering effects on the dynamics of two FWTs. Damage equivalent loads(DEL) of the turbine critical components are computed and analyzed for several arrangements determined by the different spacing of the four turbines. The result shows that the dynamic wake meandering significantly affects downstream turbines’ global loadings and load effects. Differences in DEL show that blade-root flapwise bending moments and mooring fairlead tensions are sensitive to the spacing of the turbines.
基金the National Natural Science Foundation of China(No.52171284)。
文摘The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental variables as independent is conservative.In the present study,we introduce a bivariate sample consisting of the maximum wave heights and concomitant wind speeds of the threshold by using the peak-over-threshold and declustering methods.After selecting the appropriate bivariate copulas and univariate distributions and blocking the sample into years,the bivariate compound distribution of annual extreme wave heights and concomitant wind speeds is constructed.Two joint design criteria,namely,the joint probability density method and the conditional probability method,are applied to obtain the joint return values of significant wave heights and wind speeds.Results show that(28.5±0.5)m s^(-1)is the frequently obtained wind speed based on the Atlantic dataset,and these joint design values are more appropriate than those calculated by univariate analysis in the fatigue design.
基金supported by the National Key Research and Development Program of China(No.2016YFC1401405)the National Natural Science Foundation of China(No.41376010)
文摘In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), which was simulated and computed using the WAVEWATCH Ⅲ(WW3) model. The monthly variations of these parameters showed that the significant wave height and wind speed have minimum values of 0.73 m and 5.15 ms^(-1) and 1.73 m and 8.24 ms^(-1) in the month of May and December, respectively. The annual, seasonal, and monthly mean sea state characterizations showed that the slight sea generally prevailed in the ECS and had nearly the highest occurrence in all seasons and months. Additionally, the moderate sea prevailed in the winter months of December and January, while the smooth(wavelets) sea prevailed in May. Furthermore, the spatial variation of sea states showed that the calm and smooth sea had the largest occurrences in the northern ECS. The slight sea occurred mostly(above 30%) in parts of the ECS and the surrounding locations, while higher occurrences of the rough and very rough seas were distributed in waters between the southwest ECS and the northeast South China Sea(SCS). The occurrences of the phenomenal sea conditions are insignificant and are distributed in the northwest Pacific and its upper region, which includes the Southern Kyushu-Palau Ridge and Ryukyu Trench.
基金The National Basic Research Program of China under contract Nos 2015CB453200,2013CB956200,2012CB957803 and2010CB950400the National Natural Science Foundation of China under contract Nos 41275086 and 41475070
文摘Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.
基金supported by the National Natural Science Foundation of China (51279186)the National Program on Key Basic Research Project (2011CB013704)
文摘Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint return periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.
基金Specialized Science Project for Public Welfare Industries(Metrological Sector)(GYHY201206010,GYHY201406009)Science and Technology Planning Project for Guangdong Province(2012A061400012)+3 种基金Program for the 12th Five-Year Economic Development(2012BAC22B00)Natural Science Foundation of China(41075083)Program for Integration and Application of Key Meteorological Techniques from CMA(CMAGJ2012M36)Project from Guangdong Meteorological Bureau(2013A04)
文摘In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, conducted contrast numerical experiments of assimilating the CDW data before and after reassignment to examine the impacts on the forecast of the track of Typhoon Chanthu(1003) from 00:00(Coordinated Universal Time) 21 July to 00:00 UTC23 July, 2010. The analysis results of the CDW data indicate that the number of CDWs is mainly distributed in the midand upper-troposphere above 500 h Pa, with the maximum number at about 300 h Pa. The height reassigning method mentioned in this work may update the height effectively, and the CDW data are distributed reasonably and no obvious contradiction occurs in the horizontal direction after height reassignment. After assimilating the height-reassigned CDW data, especially the water vapor CDW data, the initial wind field around Typhoon Chanthu(1003) became more reasonable, and then the steering current leading the typhoon to move to the correct location became stronger. As a result, the numerical track predictions are improved.
基金Supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP102)the Key Laboratory of Marine Environmental Survey Technology and Application+2 种基金Ministry of Natural Resources(Nos.MESTA-2020-C003,MESTA-2020-C004)the Key Research and Development Project of Guangdong Province(No.2020B1111020003)the Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ200330)。
文摘Wind and wave data are essential in climatological and engineering design applications.In this study,data from 15 buoys located throughout the South China Sea(SCS)were used to evaluate the ERA5 wind and wave data.Applicability assessment are beneficial for gaining insight into the reliability of the ERA5 data in the SCS.The bias range between the ERA5 and observed wind-speed data was-0.78-0.99 m/s.The result indicates that,while the ERA5 wind-speed data underestimation was dominate,the overestimation of such data existed as well.Additionally,the ERA5 data underestimated annual maximum wind-speed by up to 38%,with a correlation coefficient>0.87.The bias between the ERA5 and observed significant wave height(SWH)data varied from-0.24 to 0.28 m.And the ERA5 data showed positive SWH bias,which implied a general underestimation at all locations,except those in the Beibu Gulf and centralwestern SCS,where overestimation was observed.Under extreme conditions,annual maximum SWH in the ERA5 data was underestimated by up to 30%.The correlation coefficients between the ERA5 and observed SWH data at all locations were greater than 0.92,except in the central-western SCS(0.84).The bias between the ERA5 and observed mean wave period(MWP)data varied from-0.74 to 0.57 s.The ERA5 data showed negative MWP biases implying a general overestimation at all locations,except for B1(the Beibu Gulf)and B7(the northeastern SCS),where underestimation was observed.The correlation coefficient between the ERA5 and observed MWP data in the Beibu Gulf was the smallest(0.56),and those of other locations fluctuated within a narrow range from 0.82 to 0.90.The intercomparison indicates that during the analyzed time-span,the ERA5 data generally underestimated wind-speed and SWH,but overestimated MWP.Under non-extreme conditions,the ERA5 wind-speed and SWH data can be used with confidence in most regions of the SCS,except in the central-western SCS.
文摘Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.
文摘The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.
文摘A two-dimensional, multitvariate objective analysis scheme for simultaneous analysis of geopotential height and wind fields has been developed over Indian and adjoining region for use in numerical weather prediction. The height-height correlations calculated using daily data of four July months (1976-1979), are used to derive the other autocorrelations and cross-correlations assuming geostropic relationship. A Gaussian function is used to model the autocorrelation function. Since the scheme is multivariate the regression coefficients (weights) are matrix.Near the equator, the geostrophic approximation relating mass and wind is decoupled in a way similar to Bergman (1979). The objective analyses were made over Indian and adjoining region for 850, 700, 500, 300 and 200 hPa levels for the period from 4 July to 8 July 1979, 12 GMT. The analyses obtained using multivariate optimum interpolation scheme depict the synoptic situations satisfactorily. The analyses were also compared with the FGGE analyses (from ECMWF) and also with the station observations by computing the root mean square (RMS) errors and the RMS errors are comparable with those obtained in other similar studies.