As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of win...As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.展开更多
Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spra...Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spray into account,a new parameterization of drag coefficient applicable from low to extreme winds is proposed.It is shown that,under low-to-moderate wind conditions so that the sea spray effects could be neglected,the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age;whereas under high wind conditions,the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests.The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments.Correspondingly,the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed.展开更多
In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winte...In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.展开更多
With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed b...With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters.展开更多
Altimetry data have been widely used in various fiehts of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASON1 in Typhoon Shanshan is assess...Altimetry data have been widely used in various fiehts of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASON1 in Typhoon Shanshan is assessed by examining the sensor geophysical data record and illustrates how the measured return waveform, significant wave height, and backscatter are all affected by various factors associated with the typhoon, with details by the rain are illustrated. The correction method to maintain accurate wave height and wind speed measurements in Typhoon Shanshan and the results are presented. Furthermore, the additional results of rain rate and typhoon eye diameter can be retrieved. Because of the lack of in-situ measurements of wind, wave, and rain rate at Typhoon Shanshan, results are compared with the forecasted typhoon data and a good agreement is found.展开更多
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod...In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.展开更多
The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line betwe...The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds.展开更多
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu...Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.展开更多
This paper presents a study on drag coefficients under typhoon wind forcing based on observations and numerical experiments. The friction velocity and wind speed are measured at a marine observation platform in the So...This paper presents a study on drag coefficients under typhoon wind forcing based on observations and numerical experiments. The friction velocity and wind speed are measured at a marine observation platform in the South China Sea. Three typhoons: SOULIK(2013), TRAMI(2013) and FITOW(2013) are observed at a buoy station in the northeast sea area of Pingtan Island. A new parameterization is formulated for the wind drag coefficient as a function of wind speed. It is found that the drag coefficient(Cd) increases linearly with the slope of 0.083′10^(-3) for wind speed less than 24 m s^(-1). To investigate the drag coefficient under higher wind conditions, three numerical experiments are implemented for these three typhoons using SWAN wave model. The wind input data are objective reanalysis datasets, which are assimilated with many sources and provided every six hours with the resolution of 0.125?×0.125?. The numerical simulation results show a good agreement with wave observation data under typhoon wind forcing. The results indicate that the drag coefficient levels off with the linear slope of 0.012′10^(-3) for higher wind speeds(less than 34 m s^(-1)) and the new parameterization improvese the simulation accuracy compared with the Wu(1982) default used in SWAN.展开更多
The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding eff...The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.展开更多
Considering about the effect of whitecaps and foams on pulse-limited Radar Altimeters, an improved algorithm of retrieving sea surface wind speed is proposed in this paper. Firstly, a four-layer dielectric model is es...Considering about the effect of whitecaps and foams on pulse-limited Radar Altimeters, an improved algorithm of retrieving sea surface wind speed is proposed in this paper. Firstly, a four-layer dielectric model is established in order to simulate an air-sea interface. Secondly, the microwave reflectivity of a sea surface covered by spray droplets and foams at 13.5 GHz is computed based on the established model. These computed results show that the effect of spray droplets and foams in high sea state conditions shall not be negligible on retrieving sea surface wind speed. Finally, compared with the analytical algorithms proposed by Zhao and some calculated results based on a three-layer dielectric model, an improved algorithm of retrieving sea surface wind speed is presented. At a high wind speed, the improved algorithm is in a better accord with some empirical algorithms such as Brown, Young ones and et al., and also in a good agreement with ZT and other algorithms at low wind speed. This new improved algorithm will be suitable not only for low wind speed retrieval, but also for high wind speed retrieval. Better accuracy and effectiveness of wind speed retrieval can also be obtained.展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding ...Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.展开更多
Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind directio...Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind direction.From the dimension of the engineering sector,this paper introduces the vine copula to model the joint probability distribution(JPD)of wind speed,wind direction and rain intensity based on the field data in Yangjiang,China during 1971–2020.First,the profiles of wind and rain in the studied area are statistically analyzed,and the original rainfall amounts are converted into short-term rain intensity.Then,the marginal distributions of individual variables and their pairwise dependence structures are built,followed by the development of the trivariate joint distribution model.The results show that the constructed vine copula-based model can well characterize the dependence structure between wind speed,wind direction and rain intensity.Meanwhile,the JPD characteristics of wind speed and rain intensity show significant variations depending on wind direction,thus the effect of wind direction cannot be neglected.The proposed JPD model will be conducive for reasonable and precise performance assessment of structures subjected to multiple hazards of wind and rain actions.展开更多
One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea...One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.展开更多
In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a ...In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.展开更多
This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Techno...This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s...展开更多
基金The study was supported by the National Key Research and Development Program of China(No.2016YFC0303401)the National Natural Science Foundation of China(No.51779236)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226).
文摘As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.
基金supported by the National Key R&D Program of China(No.2018YFB1501901)the National Natural Science Foundation of China(Nos.51909114,U1806227 and U1906231)the Guangxi Key Laboratory of Marine Environmental Science,Guangxi Academy of Sciences(No.GXKLHY21-04).
文摘Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spray into account,a new parameterization of drag coefficient applicable from low to extreme winds is proposed.It is shown that,under low-to-moderate wind conditions so that the sea spray effects could be neglected,the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age;whereas under high wind conditions,the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests.The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments.Correspondingly,the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed.
文摘In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.
基金Project for Popularization of Advanced Meteorological Technology for 2006, China Meteorological Administration (CMATG2006M41)
文摘With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters.
基金The National Natural Science Foundation of China under contract No. 30671619
文摘Altimetry data have been widely used in various fiehts of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASON1 in Typhoon Shanshan is assessed by examining the sensor geophysical data record and illustrates how the measured return waveform, significant wave height, and backscatter are all affected by various factors associated with the typhoon, with details by the rain are illustrated. The correction method to maintain accurate wave height and wind speed measurements in Typhoon Shanshan and the results are presented. Furthermore, the additional results of rain rate and typhoon eye diameter can be retrieved. Because of the lack of in-situ measurements of wind, wave, and rain rate at Typhoon Shanshan, results are compared with the forecasted typhoon data and a good agreement is found.
基金Project(U1534210)supported by the National Natural Science Foundation of ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2015CX003)supported by the Project of Innovation-driven Plan in Central South University,ChinaProject(14JC1003)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2015T002-A)supported by the Technological Research and Development program of China Railways Cooperation
文摘In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.
基金supported by the 2013 Doctoral Innovation Funds of Southwest Jiaotong University and the Fundamental Research Funds for the Central Universitiesthe High-speed Railway Basic Research Fund Key Project of China(U1234208)the National Natural Science Foundation of China(50823004)
文摘The characteristic wind curve (CWC) was com- monly used in the previous work to evaluate the operational safety of the high-speed trains exposed to crosswinds. How- ever, the CWC only provide the dividing line between safety state and failure state of high-speed trains, which can not evaluate the risk of derailment of high-speed trains when ex- posed to natural winds. In the present paper, a more realistic approach taking into account the stochastic characteristics of natural winds is proposed, which can give a reasonable and effective assessment of the operational safety of high-speed trains under stochastic winds. In this approach, the longitudi- nal and lateral components of stochastic winds are simulated based on the Cooper theory and harmonic superposition. An algorithm is set up for calculating the unsteady aerody- namic forces (moments) of the high-speed trains exposed to stochastic winds. A multi-body dynamic model of the rail vehicle is established to compute the vehicle system dynamic response subjected to the unsteady aerodynamic forces (mo- ments) input. Then the statistical method is used to get the mean characteristic wind curve (MCWC) and spread range of the high-speed trains exposed to stochastic winds. It is found that the CWC provided by the previous analyticalmethod produces over-conservative limits. The methodol- ogy proposed in the present paper can provide more signif- icant reference for the safety operation of high-speed trains exposed to stochastic winds.
基金Projects(U1134203,51575538)supported by the National Natural Science Foundation of ChinaProject(2014T001-A)supported by the Technological Research and Development Program of China Railways CorporationProject(2015ZZTS210)supported by the Fundamental Research Funds for the Central South Universities of China
文摘Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.
基金supported by the National Natural Science Foundation of China(Nos.41276015,51509226)the Fundamental Research Funds for the Central Universities(No.201513040)Open Science Foundation of Key Laboratory of Digital Ocean,SOA(No.KLD0201404)
文摘This paper presents a study on drag coefficients under typhoon wind forcing based on observations and numerical experiments. The friction velocity and wind speed are measured at a marine observation platform in the South China Sea. Three typhoons: SOULIK(2013), TRAMI(2013) and FITOW(2013) are observed at a buoy station in the northeast sea area of Pingtan Island. A new parameterization is formulated for the wind drag coefficient as a function of wind speed. It is found that the drag coefficient(Cd) increases linearly with the slope of 0.083′10^(-3) for wind speed less than 24 m s^(-1). To investigate the drag coefficient under higher wind conditions, three numerical experiments are implemented for these three typhoons using SWAN wave model. The wind input data are objective reanalysis datasets, which are assimilated with many sources and provided every six hours with the resolution of 0.125?×0.125?. The numerical simulation results show a good agreement with wave observation data under typhoon wind forcing. The results indicate that the drag coefficient levels off with the linear slope of 0.012′10^(-3) for higher wind speeds(less than 34 m s^(-1)) and the new parameterization improvese the simulation accuracy compared with the Wu(1982) default used in SWAN.
基金financially supported by the Scientific and Technological Services Network Planning Project of Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (HHS-TSS-STS-1504)the Technological Research and Developmental Planning Projects of China Railway Corporation (2015G005-B)the National Natural Science Foundation of China (41501010, 41401611)
文摘The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand. However, the shielding effect of the sand-blocking fence is below the expectation. In this study, effects of metal net fences with porosities of 0.5 and 0.7 were tested in a wind tunnel to determine the effectiveness of the employed two kinds of fences in reducing wind velocity and restraining wind-blown sand. Specifically, the horizontal wind velocities and sediment flux densities above the gravel surface were measured under different free-stream wind velocities for the following conditions: no fence at all, single fence with a porosity of 0.5, single fence with a porosity of 0.7, double fences with a porosity of 0.5, and double fences with a porosity of 0.7. Experimental results showed that the horizontal wind velocity was more significantly decreased by the fence with a porosity of 0.5, especially for the double fences. The horizontal wind velocity decreased approximately 65% at a distance of 3.25 m(i.e., 13 H, where H denotes the fence height) downwind the double fences, and no reverse flow or vortex was observed on the leeward side. The sediment flux density decreased exponentially with height above the gravel surface downwind in all tested fences. The reduction percentage of total sediment flux density was higher for the fence with a porosity of 0.5 than for the fence with a porosity of 0.7, especially for the double fences. Furthermore, the decreasing percentage of total sediment flux density decreased with increasing free-stream wind velocity. The results suggest that compared with metal net fence with a porosity of 0.7, the metal net fence with a porosity of 0.5 is more effective for controlling wind-blown sand in the expansive windy area where the Lanzhou-Xinjiang High-speed Railway runs through.
文摘Considering about the effect of whitecaps and foams on pulse-limited Radar Altimeters, an improved algorithm of retrieving sea surface wind speed is proposed in this paper. Firstly, a four-layer dielectric model is established in order to simulate an air-sea interface. Secondly, the microwave reflectivity of a sea surface covered by spray droplets and foams at 13.5 GHz is computed based on the established model. These computed results show that the effect of spray droplets and foams in high sea state conditions shall not be negligible on retrieving sea surface wind speed. Finally, compared with the analytical algorithms proposed by Zhao and some calculated results based on a three-layer dielectric model, an improved algorithm of retrieving sea surface wind speed is presented. At a high wind speed, the improved algorithm is in a better accord with some empirical algorithms such as Brown, Young ones and et al., and also in a good agreement with ZT and other algorithms at low wind speed. This new improved algorithm will be suitable not only for low wind speed retrieval, but also for high wind speed retrieval. Better accuracy and effectiveness of wind speed retrieval can also be obtained.
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.
基金supported by the National Natural Science Foundation of China (Grant Nos.52178489 and 52078106)the Young Scholars Program of Shandong University (Grant No.2017WLJH33)。
文摘Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind direction.From the dimension of the engineering sector,this paper introduces the vine copula to model the joint probability distribution(JPD)of wind speed,wind direction and rain intensity based on the field data in Yangjiang,China during 1971–2020.First,the profiles of wind and rain in the studied area are statistically analyzed,and the original rainfall amounts are converted into short-term rain intensity.Then,the marginal distributions of individual variables and their pairwise dependence structures are built,followed by the development of the trivariate joint distribution model.The results show that the constructed vine copula-based model can well characterize the dependence structure between wind speed,wind direction and rain intensity.Meanwhile,the JPD characteristics of wind speed and rain intensity show significant variations depending on wind direction,thus the effect of wind direction cannot be neglected.The proposed JPD model will be conducive for reasonable and precise performance assessment of structures subjected to multiple hazards of wind and rain actions.
基金National Natural Science Foundation of China(41475019,41631072)
文摘One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.
文摘In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.
文摘This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s...