To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti...To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.展开更多
To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turb...To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method.展开更多
This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand...This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand. Design factors include types of wind turbines, number of blades, types of materials, height-to-radius ratios, and design modifications. Potential VAWT models with different design factors are numerically analyzed within a virtual wind tunnel at various wind speeds by utilizing XflowTM?Computational Fluid Dynamics (CFD) software. The performance curves of each VAWT are obtained as plots of power coefficients against tip speed ratios. It is found that the type of wind turbine, number of blades, and height-to-radius ratio have significant effects on mechanical performance whereas types of materials result in shifts of operating speeds of VAWTs. Accordingly, an optimal VAWT prototype is developed to operate under actual low speed wind conditions. The performance curve from experimental results agrees with the CFD results. The proposed methodology can be used in the computer design of VAWTs to improve mechanical performance before physical fabrication.展开更多
Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especia...Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.展开更多
The present work is based on the comparative study between “Blade-Element- Momentum” (BEM) analysis and “Computational-Fluid-Dynamics” (CFD) analysis of small-scale horizontal axis wind turbine blade. In this stud...The present work is based on the comparative study between “Blade-Element- Momentum” (BEM) analysis and “Computational-Fluid-Dynamics” (CFD) analysis of small-scale horizontal axis wind turbine blade. In this study, the pitch is considered as fixed and rotor speed is variable. Firstly, the aerodynamic characteristics of three different specialized airfoils were analyzed to get optimum design parameters of wind turbine blade. Then BEM was performed with the application of the open source wind turbine design and performance computation software Q-Blade v0.6. After that, CFD simulation was done by Ansys CFX software. Here, k-ω “Shear-Stress-Transport” (SST) model was conducted for three-dimensional visualization of turbine performance. However, the best coefficient of performance was observed at 6o angle of attack. At this angle of attack, in the case of BEM, the highest coefficient of performance was 0.47 whereby CFD analysis, it was 0.43. Both studies showed good performance prediction which was a positive step to accelerate the continuous revolution in wind energy sector.展开更多
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic paramete...With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.展开更多
The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard sta...The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard statistical distribution such as a Weibull with k = 2.0. In this study a more elaborated design will be attempted by also considering the statistical bias as a design criterion. The wind data used in this study were collected from three areas of the Lamtakong weather station in Nakhonratchasima Provice, the Khaokoh weather station in Phetchaboon and the Sirindhorn dam weather station in Ubonratchathani, Thailand. The objective is to design a best aerodynamic configurations for the blade (chord, twist and pitch) using the same airfoil as that of NREL Phase VI wind turbine. Such design is carried out at a design wind speed point. Wind turbine blades were optimized for both maximum annual energy production and minimum cost of energy using a method that take into account aerodynamic and structural considerations. The work will be carried out by the program “SuWiTStat” which was developed by the authors and based on BEM Theory (Blade Element Momentum). Another side issue is the credibility of the Weibull statistic in representing the real wind measurement. This study uses a regression analysis to determine this issue.展开更多
针对风电全直流系统并网给交流电网带来的系统惯量降低、调频能力不足等问题,提出一种改善惯性响应与一次调频的变系数风电全直流系统协调控制策略。在惯量响应方面,网侧换流站采用惯性同步控制,直流升压站采用恒变比控制,实现直流电容...针对风电全直流系统并网给交流电网带来的系统惯量降低、调频能力不足等问题,提出一种改善惯性响应与一次调频的变系数风电全直流系统协调控制策略。在惯量响应方面,网侧换流站采用惯性同步控制,直流升压站采用恒变比控制,实现直流电容对电网的惯量支撑及直流低压侧的直流电压对交流系统频率的感知,在此基础上对直流风电机组(direct current wind turbine,DCWT)附加变虚拟惯性系数的虚拟惯量控制,使风电全直流系统在不同频率响应阶段具备不同的等效惯量。在一次调频方面,DCWT采用超速与变桨相结合的减载运行方式,通过变下垂控制来改变其有功出力,充分利用不同风速下的备用容量,使风电全直流系统更有效地参与一次调频。仿真算例表明,文中所提策略改善了风电全直流系统接入后电力系统的惯性响应及一次调频。展开更多
The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and cana...The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and canals. The aim of this paper is to improve the efficiency of a two bladed Savonius type cross-flow hydrokinetic turbine, which can be used as an energy converter to harness free-stream kinetic energy of water. An impinging jet duct design is presented for improving performance of the Savonius turbine in wind application as seen from literature. The performance of the modified turbine is evaluated using CFD software Fluent, and is compared with that of a simple two bladed Savonius water turbine and some of the prominent literature designs of the Savonius turbine. It is shown that the present design exhibits improved performance compared to the selected designs of the Savonius turbine.Further an insight of the improved performance of the modified turbine is also obtained from flow physics study.展开更多
The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for bo...The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for both steady and unsteady winds. The compact-type wind lens turbine shows higher efficiency than the only rotor wind turbine. Also, the flow structure around the compact-type wind turbine is made clear by CFD and PIV in steady wind. Furthermore, the performances of the only rotor and the compact-type wind-lens turbines for unsteady wind are experimentally and numerically investigated. Experimental and numerical results are presented to demonstrate the dependence of frequency of the harmonic oscillating velocity wind on power coefficient. Consequently, the compact-type wind-lens turbine show better performance than the only rotor one in sinusoidally oscillating velocity wind. Furthermore, the numerical estimation can predict the power coefficient in the oscillating flows to an accuracy of 94% to 102%. In addition, the dependence of the turbine performance on turbulent intensity and vortex scale of natural fluctuating wind is presented.展开更多
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
基金supported by the National Natural Science Foundation Projects(Grant Number 51966018)the Chongqing Natural Science Foundation of China(Grant Number cstc2020jcyjmsxmX0314)+2 种基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003)Ningxia Key Research and Development Program of Foreign Science and Technology Cooperation Projects(202204)the Key Scientific Research Project in Higher Education Institution from the Ningxia Education Department(2022115).
文摘To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.
基金Supported by the National Natural Science Foundation of China(No.51205430)Natural Science Foundation of ChongQing(No.cstc2011ijA70002)China Postdoctoral Science Foundation(No.2013T60842)
文摘To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method.
文摘This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand. Design factors include types of wind turbines, number of blades, types of materials, height-to-radius ratios, and design modifications. Potential VAWT models with different design factors are numerically analyzed within a virtual wind tunnel at various wind speeds by utilizing XflowTM?Computational Fluid Dynamics (CFD) software. The performance curves of each VAWT are obtained as plots of power coefficients against tip speed ratios. It is found that the type of wind turbine, number of blades, and height-to-radius ratio have significant effects on mechanical performance whereas types of materials result in shifts of operating speeds of VAWTs. Accordingly, an optimal VAWT prototype is developed to operate under actual low speed wind conditions. The performance curve from experimental results agrees with the CFD results. The proposed methodology can be used in the computer design of VAWTs to improve mechanical performance before physical fabrication.
文摘Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.
文摘The present work is based on the comparative study between “Blade-Element- Momentum” (BEM) analysis and “Computational-Fluid-Dynamics” (CFD) analysis of small-scale horizontal axis wind turbine blade. In this study, the pitch is considered as fixed and rotor speed is variable. Firstly, the aerodynamic characteristics of three different specialized airfoils were analyzed to get optimum design parameters of wind turbine blade. Then BEM was performed with the application of the open source wind turbine design and performance computation software Q-Blade v0.6. After that, CFD simulation was done by Ansys CFX software. Here, k-ω “Shear-Stress-Transport” (SST) model was conducted for three-dimensional visualization of turbine performance. However, the best coefficient of performance was observed at 6o angle of attack. At this angle of attack, in the case of BEM, the highest coefficient of performance was 0.47 whereby CFD analysis, it was 0.43. Both studies showed good performance prediction which was a positive step to accelerate the continuous revolution in wind energy sector.
基金supported by the National Basic Research Program of China (973 Program) (No. 2007CB714605)
文摘With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.
文摘The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard statistical distribution such as a Weibull with k = 2.0. In this study a more elaborated design will be attempted by also considering the statistical bias as a design criterion. The wind data used in this study were collected from three areas of the Lamtakong weather station in Nakhonratchasima Provice, the Khaokoh weather station in Phetchaboon and the Sirindhorn dam weather station in Ubonratchathani, Thailand. The objective is to design a best aerodynamic configurations for the blade (chord, twist and pitch) using the same airfoil as that of NREL Phase VI wind turbine. Such design is carried out at a design wind speed point. Wind turbine blades were optimized for both maximum annual energy production and minimum cost of energy using a method that take into account aerodynamic and structural considerations. The work will be carried out by the program “SuWiTStat” which was developed by the authors and based on BEM Theory (Blade Element Momentum). Another side issue is the credibility of the Weibull statistic in representing the real wind measurement. This study uses a regression analysis to determine this issue.
文摘针对风电全直流系统并网给交流电网带来的系统惯量降低、调频能力不足等问题,提出一种改善惯性响应与一次调频的变系数风电全直流系统协调控制策略。在惯量响应方面,网侧换流站采用惯性同步控制,直流升压站采用恒变比控制,实现直流电容对电网的惯量支撑及直流低压侧的直流电压对交流系统频率的感知,在此基础上对直流风电机组(direct current wind turbine,DCWT)附加变虚拟惯性系数的虚拟惯量控制,使风电全直流系统在不同频率响应阶段具备不同的等效惯量。在一次调频方面,DCWT采用超速与变桨相结合的减载运行方式,通过变下垂控制来改变其有功出力,充分利用不同风速下的备用容量,使风电全直流系统更有效地参与一次调频。仿真算例表明,文中所提策略改善了风电全直流系统接入后电力系统的惯性响应及一次调频。
文摘The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and canals. The aim of this paper is to improve the efficiency of a two bladed Savonius type cross-flow hydrokinetic turbine, which can be used as an energy converter to harness free-stream kinetic energy of water. An impinging jet duct design is presented for improving performance of the Savonius turbine in wind application as seen from literature. The performance of the modified turbine is evaluated using CFD software Fluent, and is compared with that of a simple two bladed Savonius water turbine and some of the prominent literature designs of the Savonius turbine. It is shown that the present design exhibits improved performance compared to the selected designs of the Savonius turbine.Further an insight of the improved performance of the modified turbine is also obtained from flow physics study.
文摘The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for both steady and unsteady winds. The compact-type wind lens turbine shows higher efficiency than the only rotor wind turbine. Also, the flow structure around the compact-type wind turbine is made clear by CFD and PIV in steady wind. Furthermore, the performances of the only rotor and the compact-type wind-lens turbines for unsteady wind are experimentally and numerically investigated. Experimental and numerical results are presented to demonstrate the dependence of frequency of the harmonic oscillating velocity wind on power coefficient. Consequently, the compact-type wind-lens turbine show better performance than the only rotor one in sinusoidally oscillating velocity wind. Furthermore, the numerical estimation can predict the power coefficient in the oscillating flows to an accuracy of 94% to 102%. In addition, the dependence of the turbine performance on turbulent intensity and vortex scale of natural fluctuating wind is presented.
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.