A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc...A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work.展开更多
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and...The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.展开更多
The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations a...The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.展开更多
The article considers the issues on preliminary calculation of human-powered ornithopter general performances. The model of “simple ornithopter” is introduced. Giving an example of simple ornithopter interaction wit...The article considers the issues on preliminary calculation of human-powered ornithopter general performances. The model of “simple ornithopter” is introduced. Giving an example of simple ornithopter interaction with the environment, the formula of relation of ornithopter theoretically available propulsion to kinematic and physical parameters of its horizontal flight parameters is derived. The tasking is performed for the following stages of calculation and design of the human-powered ornithopter.展开更多
Wheel–rail adhesion is a complex tribological problem of wheel–rail rolling contact and is closely related to the operational safety of high-speed trains.A new design concept of high-speed trains was recently propos...Wheel–rail adhesion is a complex tribological problem of wheel–rail rolling contact and is closely related to the operational safety of high-speed trains.A new design concept of high-speed trains was recently proposed with an expectation of a reduction of equivalent weight and total energy consumption by installing aerodynamic wings(aero-wings)on the roof,but it was accompanied by the disadvantage of deteriorating wheel–rail adhesion performance.In this study,a comprehensive multibody dynamics(MBD)model of the high-speed train with predesigned aero-wings is established using the commercial software SIMPACK,in which the real aerodynamic characteristics of the train are taken into account.The available adhesion and adhesion margin are employed to evaluate the wheel–rail adhesion performance.The influences of aero-wing lift,train speed,and contact conditions on the wheel–rail adhesion level are discussed.The results show that the load transfer caused by the action of aerodynamic load and braking torque was the main reason for the inconsistent adhesion condition of four wheelsets.The influences of aero-wing lift and train speed on the wheel–rail adhesion performance are coupled;the available adhesion of both motor car and trailer is negatively correlated with aero-wing lift and train speed under all contact conditions,while the variation law of adhesion margin with train speed shows differences under different contact conditions.When the wheel–rail interface was polluted by a‘third-body medium’such as water and oil,the wheel–rail adhesion performance was dramatically reduced and the wheelset tended to reach adhesion saturation and slide.However,track irregularity had little effect on the adhesion performance and could be ignored to save calculation time.These results are of positive significance for reducing the wheel idling or sliding phenomenon and to ensure the safe operation of high-speed trains with aero-wings.展开更多
This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design id...This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.展开更多
文摘A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work.
基金The project supported by the National Natural Science Foundation of China(10232010)the National Aeronautic Science Fund of China(03A51049)
文摘The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.
基金supported by the National Natural Science Foundation of China (10432020, 10872019 and 10702004)
文摘The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.
文摘The article considers the issues on preliminary calculation of human-powered ornithopter general performances. The model of “simple ornithopter” is introduced. Giving an example of simple ornithopter interaction with the environment, the formula of relation of ornithopter theoretically available propulsion to kinematic and physical parameters of its horizontal flight parameters is derived. The tasking is performed for the following stages of calculation and design of the human-powered ornithopter.
基金the National Key Research and Development Program(No.2020YFA0710902)the National Natural Science Foundation of China(No.11772275).
文摘Wheel–rail adhesion is a complex tribological problem of wheel–rail rolling contact and is closely related to the operational safety of high-speed trains.A new design concept of high-speed trains was recently proposed with an expectation of a reduction of equivalent weight and total energy consumption by installing aerodynamic wings(aero-wings)on the roof,but it was accompanied by the disadvantage of deteriorating wheel–rail adhesion performance.In this study,a comprehensive multibody dynamics(MBD)model of the high-speed train with predesigned aero-wings is established using the commercial software SIMPACK,in which the real aerodynamic characteristics of the train are taken into account.The available adhesion and adhesion margin are employed to evaluate the wheel–rail adhesion performance.The influences of aero-wing lift,train speed,and contact conditions on the wheel–rail adhesion level are discussed.The results show that the load transfer caused by the action of aerodynamic load and braking torque was the main reason for the inconsistent adhesion condition of four wheelsets.The influences of aero-wing lift and train speed on the wheel–rail adhesion performance are coupled;the available adhesion of both motor car and trailer is negatively correlated with aero-wing lift and train speed under all contact conditions,while the variation law of adhesion margin with train speed shows differences under different contact conditions.When the wheel–rail interface was polluted by a‘third-body medium’such as water and oil,the wheel–rail adhesion performance was dramatically reduced and the wheelset tended to reach adhesion saturation and slide.However,track irregularity had little effect on the adhesion performance and could be ignored to save calculation time.These results are of positive significance for reducing the wheel idling or sliding phenomenon and to ensure the safe operation of high-speed trains with aero-wings.
文摘This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.