On highways,vehicles that swerve out of their lane due to sideslip can pose a serious threat to the safety of autonomous vehicles.To ensure their safety,predicting the sideslip trajectories of such vehicles is crucial...On highways,vehicles that swerve out of their lane due to sideslip can pose a serious threat to the safety of autonomous vehicles.To ensure their safety,predicting the sideslip trajectories of such vehicles is crucial.However,the scarcity of data on vehicle sideslip scenarios makes it challenging to apply data-driven methods for prediction.Hence,this study uses a physical model-based approach to predict vehicle sideslip trajectories.Nevertheless,the traditional physical model-based method relies on constant input assumption,making its long-term prediction accuracy poor.To address this challenge,this study presents the time-series analysis and interacting multiple model-based(IMM)sideslip trajectory prediction(TSIMMSTP)method,which encompasses time-series analysis and multi-physical model fusion,for the prediction of vehicle sideslip trajectories.Firstly,we use the proposed adaptive quadratic exponential smoothing method with damping(AQESD)in the time-series analysis module to predict the input state sequence required by kinematic models.Then,we employ an IMM approach to fuse the prediction results of various physical models.The implementation of these two methods allows us to significantly enhance the long-term predictive accuracy and reduce the uncertainty of sideslip trajectories.The proposed method is evaluated through numerical simulations in vehicle sideslip scenarios,and the results clearly demonstrate that it improves the long-term prediction accuracy and reduces the uncertainty compared to other model-based methods.展开更多
As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Conside...As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Considering a dynamic system that is composed of normal, deteriorating and unreliable components, this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems. For a deteriorating component, the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time. The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component. The whole proposed approach contains three algorithms. A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault. An exponential smoothing algorithm named the Holt's method is used to predict the fault process. In the end, the system's reliability is predicted in real time by use of the Monte Carlo strategy. The proposed approach can effectively predict the impending failure of a dynamic system, which is verified by computer simulations based on a three-vessel water tank system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51975310).
文摘On highways,vehicles that swerve out of their lane due to sideslip can pose a serious threat to the safety of autonomous vehicles.To ensure their safety,predicting the sideslip trajectories of such vehicles is crucial.However,the scarcity of data on vehicle sideslip scenarios makes it challenging to apply data-driven methods for prediction.Hence,this study uses a physical model-based approach to predict vehicle sideslip trajectories.Nevertheless,the traditional physical model-based method relies on constant input assumption,making its long-term prediction accuracy poor.To address this challenge,this study presents the time-series analysis and interacting multiple model-based(IMM)sideslip trajectory prediction(TSIMMSTP)method,which encompasses time-series analysis and multi-physical model fusion,for the prediction of vehicle sideslip trajectories.Firstly,we use the proposed adaptive quadratic exponential smoothing method with damping(AQESD)in the time-series analysis module to predict the input state sequence required by kinematic models.Then,we employ an IMM approach to fuse the prediction results of various physical models.The implementation of these two methods allows us to significantly enhance the long-term predictive accuracy and reduce the uncertainty of sideslip trajectories.The proposed method is evaluated through numerical simulations in vehicle sideslip scenarios,and the results clearly demonstrate that it improves the long-term prediction accuracy and reduces the uncertainty compared to other model-based methods.
基金Supported by the National Basic Research Program of China (Grant Nos. 2009CB320602, 2010CB731800)the National Natural Science Foundation of China (Grant Nos. 60721003, 60736026)
文摘As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Considering a dynamic system that is composed of normal, deteriorating and unreliable components, this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems. For a deteriorating component, the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time. The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component. The whole proposed approach contains three algorithms. A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault. An exponential smoothing algorithm named the Holt's method is used to predict the fault process. In the end, the system's reliability is predicted in real time by use of the Monte Carlo strategy. The proposed approach can effectively predict the impending failure of a dynamic system, which is verified by computer simulations based on a three-vessel water tank system.