Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the winter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show that the three lead...Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the winter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show that the three leading space-time modes correspond, in sequence, to winter rainfall anomalies over the reaches of the Yangtze River, the bend of the Yellow River, and the northeastern region of China. The three modes exhibit interannual oscillations with quasi-biennial and 8-year periods as well as interdecadal oscillations with 16- and 32-year periods. The interannual oscillation (【 10 years) occurs in phase over the different areas, and its maximum amplitude migrates northward considerably with prominent interdecadal variations. However, the interdecadal oscillations (10-32 years) are out of phase over the different regions, and the amplitude variations have the characteristics of stationary waves. The rainfall anomalies appear to be closely related to the anti-phase changes of mean sea-level pressure (SLP) over the Asian mainland and the North Pacific. When the SLP rises over the North Pacific and decreases over the Asian mainland, the precipitation over East China increases noticeably. The linkage between the rainfall over China and the SLP anomalies apparently results from the strength of the East Asian winter monsoon and its associated temperature and moisture advection.展开更多
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actua...Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.展开更多
An effective statistical downscaling scheme was developed on the basis of singular value decomposition to predict boreal winter(December-January-February)precipitation over China.The variable geopotential height at 50...An effective statistical downscaling scheme was developed on the basis of singular value decomposition to predict boreal winter(December-January-February)precipitation over China.The variable geopotential height at 500 hPa(GH5)over East Asia,which was obtained from National Centers for Environmental Prediction’s Coupled Forecast System(NCEP CFS),was used as one predictor for the scheme.The preceding sea ice concentration(SIC)signal obtained from observed data over high latitudes of the Northern Hemisphere was chosen as an additional predictor.This downscaling scheme showed significantly improvement in predictability over the original CFS general circulation model(GCM)output in cross validation.The multi-year average spatial anomaly correlation coefficient increased from–0.03 to 0.31,and the downscaling temporal root-mean-square-error(RMSE)decreased significantly over that of the original CFS GCM for most China stations.Furthermore,large precipitation anomaly centers were reproduced with greater accuracy in the downscaling scheme than those in the original CFS GCM,and the anomaly correlation coefficient between the observation and downscaling results reached~0.6 in the winter of 2008.展开更多
Associations between autumn Arctic sea ice concentration(SIC) and early winter precipitation in China are studied using singular value decomposition analysis. The results show that a reduced SIC almost everywhere in...Associations between autumn Arctic sea ice concentration(SIC) and early winter precipitation in China are studied using singular value decomposition analysis. The results show that a reduced SIC almost everywhere in the Arctic Ocean, except the northern Greenland Sea and Canadian Basin, are accompanied by dry conditions over central China, extending northeast from the Tibetan Plateau toward the Japan Sea, the Bohai Sea and the Yellow Sea, and wet conditions over South China and North China. Atmospheric circulation anomalies associated with SIC variability show two wave-train structures, which are persistent from autumn to winter, leading to the identified relationship between autumn Arctic SIC and early winter precipitation in China. Given that the decline in autumn SIC in the Arctic Ocean is expected to continue as the climate warms, this relationship provides a possible long-term outlook for early winter precipitation in China.展开更多
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocea...The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.展开更多
Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is th...Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is therefore necessary to use a method that combines both dynamical and statistical predictions of winter precipitation over eastern China (hereinafter called the hybrid approach), in this connection, seasonal real-time prediction models for winter precipitation were established for the six regions. The models use both the preceding observations and synchronous numerical predictions through a multivariate linear regression analysis. To improve the prediction accuracy, the systematic error between the original regression model result and the corresponding observation was corrected. Cross-validation analysis and real-time prediction experiments indicate that the prediction models using the hybrid approach can reliably predict the trend, sign, and interannual variation of regionally averaged winter precipitation in the six regions of concern. Averaged over the six target regions, the anomaly correlation coefficient and the rate with the same sign of anomaly between the cross-validation analysis and observation during 1982-2008 are 0.69 and 78%, respectively. This indicates that the hybrid prediction approach adopted in this study is applicable in operational practice.展开更多
Using multiple datasets, this paper analyzes the characteristics of winter precipitation over southern China and its association with warm and cold phases of E1 Nifio-Southern Oscillation during 1948 2011. The study p...Using multiple datasets, this paper analyzes the characteristics of winter precipitation over southern China and its association with warm and cold phases of E1 Nifio-Southern Oscillation during 1948 2011. The study proves that E1 Nifio is an important external forcing factor resulting in above-normal winter precipitation in southern China. The study also reveals that the impact ofLa Nifia on the winter precipitation in southern China has a decadal variability. During the winter of La Nifia before 1980, the East Asian winter monsoon is stronger than normal with a deeper trough over East Asia, and the western Pacific subtropical high weakens with its high ridge retreating more eastward. Therefore, anomalous northerly winds dominate over southern China, leading to a cold and dry winter. During La Nifia winter after 1980, however, the East Asian trough is weaker than normal, unfavorable for the southward invasion of the winter monsoon. The India-Burma trough is intensified, and the anomalous low-level cyclone excited by La Nifia is located to the west of the Philippines. Therefore, anomalous easterly winds prevail over southern China, which increases moisture flux from the tropical oceans to southern China. Meanwhile, La Nifia after 1980 may lead to an enhanced and more northward subtropical westerly jet over East Asia in winter. Since southern China is rightly located on the right side of the jet entrance region, anomalous ascending motion dominates there through the secondary vertical circulation, favoring more winter precipitation in southern China. Therefore, a cold and wet winter, sometimes with snowy and icy weathers, would occur in southern China during La Nifia winter after 1980. Further analyses indicate that the change in the spatial distribution of sea surface temperature anomaly during the La Nifia mature phase, as well as the decadal variation of the Northern Hemisphere atmospheric circulation, would be the important reasons for the decadal variability of the La Nifia impact on the atmospheric circulation in East Asia and winter precipitation over southern China after 1980.展开更多
Gasterophilus spp.have been found to be widespread in reintroduced Przewalski’s horses in the Kalamaili Nature Reserve(Northwest China).However,data on the annual variation in Gasterophilus infections are lacking.To ...Gasterophilus spp.have been found to be widespread in reintroduced Przewalski’s horses in the Kalamaili Nature Reserve(Northwest China).However,data on the annual variation in Gasterophilus infections are lacking.To analyze the epidemiological features and determine the cause of the annual variation in Gasterophilus infections,we treated 110 Przewalski’s horses with ivermectin and collected Gasterophilus larvae from fecal samples each winter from 2007 to 2019.All 110 Przewalski’s horses studied were found to be infected by Gasterophilus spp.,and a total of 141379 larvae were collected.Six species of Gasterophilus were identified with the following prevalence:G.pecorum(100%),G.nasalis(96.36%),G.nigricornis(94.55%),G.haemorrhoidalis(56.36%),G.intestinalis(59.09%),and G.inermis(3.64%).The mean infection intensity of Gasterophilus spp.larvae in Przewalski’s horses was 1285±653.G.pecorum(92.96%±6.71%)was the most abundant species.The intensity of Gasterophilus spp.(r=–0.561,P<0.046)was significantly correlated with winter precipitation.Our findings confirmed that,in the Kalamaili Nature Reserve,gasterophilosis is a severe parasitic disease in Przewalski’s horses.Winter precipitation at the beginning of the year can indirectly affect the intensity and composition of Gasterophilus spp.in Przewalski’s horses at the end of the year.Therefore,the water-related ecological regulation should be carried out to help reduce the parasite infection of Przewalski’s horses.展开更多
In this paper, the impact of ENSO on the precipitation over China in the winter half-year is investigated diagnostically. The results show that positive precipitation anomalies with statistical significance appear ove...In this paper, the impact of ENSO on the precipitation over China in the winter half-year is investigated diagnostically. The results show that positive precipitation anomalies with statistical significance appear over southern China in El Nio episodes, which are caused by the enhanced warm and humid southwesterlies along the East Asian coast in the lower troposphere. The enhanced southwesterlies transport more water vapor to southern China, and the convergence of water vapor over southern China increases the precipitable water and specific humidity. In La Nia episodes,although atmospheric elements change reversely, they are not statistically significant as those in El Nio periods. The possible physical mechanism of the different impact of ENSO cycle on the precipitation over southern China is investigated by analyzing the intraseasonal oscillations(ISOs) in El Nio and La Nia winter half-years, respectively. By comparing the characteristics of ISOs in El Nio and La Nia, a physical mechanism is proposed to explain the different responses of the precipitation over China to ENSO in the winter half-year. In El Nio episodes, over western North Pacific(WNP) and South China Sea(SCS) the ISOs are inactive and exert little effect on water vapor transport and convergence, inducing positive precipitation anomalies with statistical significance over southern China in El Nio episodes. In La Nia episodes, however, the ISOs are active, which weaken the interannual variation signals of ENSO over WNP and southern China and lead to the insignificance of the interannual signals related to ENSO. Therefore, the different responses of precipitation over China to ENSO in the winter half-year are possibly caused by the difference of intraseasonal oscillations over WNP and SCS between El Nio and La Nia.展开更多
The Tibetan Plateau(TP)and the Arctic are the most sensitive regions to global climate change.However,the interdecadal varibility of winter extreme precipitation over the TP and its linkage with Arctic sea ice are sti...The Tibetan Plateau(TP)and the Arctic are the most sensitive regions to global climate change.However,the interdecadal varibility of winter extreme precipitation over the TP and its linkage with Arctic sea ice are still unclear.In this study,the characteristics and mechisnems of the TP extreme precipitation(TPEP)influenced by Arctic sea ice on interdecadal timescale are studied based on the daily precipitation,monthly sea ice concentration and ERA5 reanalysis data from 1980 to 2018.We found that the dominant mode of the TPEP in winter mostly exhibits a uniform spatial variation on the interdecadal timescale,with an opposite weak variation in the southeastern TP,and the Arctic sea ice concentration(SIC)before 2002 are larger than that after 2003.The interdecadal variation of TPEP is affected by two teleconnection wave trains regulated by the Barents and Kara Sea ice.In the light ice years,a remarkable positive geopotential height(HGT)anomaly appears over the Barents-Kara Sea and a remarkable negative HGT anomaly is located over the Lake Baikal.Two wave trains originating over the Barents-Kara Sea can be observed.The southern branch forms a wave train through the North Atlantic along the subtropical westerly jet stream,showing a‘+-+-+'pattern of HGT anomalies from Arctic to the TP.Negative HGT anomaly controls the western TP,which creates dynamic and water vapor conditions for the TPEP.The northern branch forms a wave train through the Lake Baikal and the southeast of the TP,showing a‘+-+'HGT anomaly distribution.Positive HGT anomaly controls the southeastern TP,which is not conducive to precipitation in the region.When the SIC in the Barents-Kara Sea increases,the situation is opposite.The above analysis also reveals the reason for the difference in the east-west distribution of the TPEP.展开更多
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irr...To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.展开更多
文摘Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the winter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show that the three leading space-time modes correspond, in sequence, to winter rainfall anomalies over the reaches of the Yangtze River, the bend of the Yellow River, and the northeastern region of China. The three modes exhibit interannual oscillations with quasi-biennial and 8-year periods as well as interdecadal oscillations with 16- and 32-year periods. The interannual oscillation (【 10 years) occurs in phase over the different areas, and its maximum amplitude migrates northward considerably with prominent interdecadal variations. However, the interdecadal oscillations (10-32 years) are out of phase over the different regions, and the amplitude variations have the characteristics of stationary waves. The rainfall anomalies appear to be closely related to the anti-phase changes of mean sea-level pressure (SLP) over the Asian mainland and the North Pacific. When the SLP rises over the North Pacific and decreases over the Asian mainland, the precipitation over East China increases noticeably. The linkage between the rainfall over China and the SLP anomalies apparently results from the strength of the East Asian winter monsoon and its associated temperature and moisture advection.
基金This study was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant numbers 41675083 and 41991281].
文摘Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.
基金supported by the China Meteorological Special Project(GYHY201206016)the National Basic Research Program of China(2010CB950304)the Innovation Key Program of the Chinese Academy of Sciences(KZCX2-YW-QN202)
文摘An effective statistical downscaling scheme was developed on the basis of singular value decomposition to predict boreal winter(December-January-February)precipitation over China.The variable geopotential height at 500 hPa(GH5)over East Asia,which was obtained from National Centers for Environmental Prediction’s Coupled Forecast System(NCEP CFS),was used as one predictor for the scheme.The preceding sea ice concentration(SIC)signal obtained from observed data over high latitudes of the Northern Hemisphere was chosen as an additional predictor.This downscaling scheme showed significantly improvement in predictability over the original CFS general circulation model(GCM)output in cross validation.The multi-year average spatial anomaly correlation coefficient increased from–0.03 to 0.31,and the downscaling temporal root-mean-square-error(RMSE)decreased significantly over that of the original CFS GCM for most China stations.Furthermore,large precipitation anomaly centers were reproduced with greater accuracy in the downscaling scheme than those in the original CFS GCM,and the anomaly correlation coefficient between the observation and downscaling results reached~0.6 in the winter of 2008.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programmes,State Oceanic Administration under contact Nos CHINARE2014-03-01 and CHINARE2014-04-03the Public Science and Technology Research Funds Projects of Ocean under contact No.201205007the Basic Research Operating Funds of the First Institute of Oceanography,State Oceanic Administration under contact Nos 2014T02 and 2014G02
文摘Associations between autumn Arctic sea ice concentration(SIC) and early winter precipitation in China are studied using singular value decomposition analysis. The results show that a reduced SIC almost everywhere in the Arctic Ocean, except the northern Greenland Sea and Canadian Basin, are accompanied by dry conditions over central China, extending northeast from the Tibetan Plateau toward the Japan Sea, the Bohai Sea and the Yellow Sea, and wet conditions over South China and North China. Atmospheric circulation anomalies associated with SIC variability show two wave-train structures, which are persistent from autumn to winter, leading to the identified relationship between autumn Arctic SIC and early winter precipitation in China. Given that the decline in autumn SIC in the Arctic Ocean is expected to continue as the climate warms, this relationship provides a possible long-term outlook for early winter precipitation in China.
基金jointly supported by the Special Fund for Public Welfare Industry (meteorology) (Grant No. GYHY201306026)the National Natural Science Foundation of China (Grant Nos. 41421004 and 41522503)
文摘The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.
基金Supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-Q03-3)National Basic Research Program of China(2009CB421406)+1 种基金Special Public Welfare Research Fund for Meteorological Profession of China Mete-orological Administration(GYHY200906018)National Natural Science Foundation of China(40875048)
文摘Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is therefore necessary to use a method that combines both dynamical and statistical predictions of winter precipitation over eastern China (hereinafter called the hybrid approach), in this connection, seasonal real-time prediction models for winter precipitation were established for the six regions. The models use both the preceding observations and synchronous numerical predictions through a multivariate linear regression analysis. To improve the prediction accuracy, the systematic error between the original regression model result and the corresponding observation was corrected. Cross-validation analysis and real-time prediction experiments indicate that the prediction models using the hybrid approach can reliably predict the trend, sign, and interannual variation of regionally averaged winter precipitation in the six regions of concern. Averaged over the six target regions, the anomaly correlation coefficient and the rate with the same sign of anomaly between the cross-validation analysis and observation during 1982-2008 are 0.69 and 78%, respectively. This indicates that the hybrid prediction approach adopted in this study is applicable in operational practice.
基金Supported by the National (Key) Basic Research and Development(973)Program of China(2013CB430203)National Natural Science Foundation of China(41005038 and 41105053)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306023 and GYHY200906016)
文摘Using multiple datasets, this paper analyzes the characteristics of winter precipitation over southern China and its association with warm and cold phases of E1 Nifio-Southern Oscillation during 1948 2011. The study proves that E1 Nifio is an important external forcing factor resulting in above-normal winter precipitation in southern China. The study also reveals that the impact ofLa Nifia on the winter precipitation in southern China has a decadal variability. During the winter of La Nifia before 1980, the East Asian winter monsoon is stronger than normal with a deeper trough over East Asia, and the western Pacific subtropical high weakens with its high ridge retreating more eastward. Therefore, anomalous northerly winds dominate over southern China, leading to a cold and dry winter. During La Nifia winter after 1980, however, the East Asian trough is weaker than normal, unfavorable for the southward invasion of the winter monsoon. The India-Burma trough is intensified, and the anomalous low-level cyclone excited by La Nifia is located to the west of the Philippines. Therefore, anomalous easterly winds prevail over southern China, which increases moisture flux from the tropical oceans to southern China. Meanwhile, La Nifia after 1980 may lead to an enhanced and more northward subtropical westerly jet over East Asia in winter. Since southern China is rightly located on the right side of the jet entrance region, anomalous ascending motion dominates there through the secondary vertical circulation, favoring more winter precipitation in southern China. Therefore, a cold and wet winter, sometimes with snowy and icy weathers, would occur in southern China during La Nifia winter after 1980. Further analyses indicate that the change in the spatial distribution of sea surface temperature anomaly during the La Nifia mature phase, as well as the decadal variation of the Northern Hemisphere atmospheric circulation, would be the important reasons for the decadal variability of the La Nifia impact on the atmospheric circulation in East Asia and winter precipitation over southern China after 1980.
基金supported by the National Science Foundation of China(No.31670538,No.30870463)the Project of Department for Wildlife and Forest Plants Protection,SFA of China(No.2018123).
文摘Gasterophilus spp.have been found to be widespread in reintroduced Przewalski’s horses in the Kalamaili Nature Reserve(Northwest China).However,data on the annual variation in Gasterophilus infections are lacking.To analyze the epidemiological features and determine the cause of the annual variation in Gasterophilus infections,we treated 110 Przewalski’s horses with ivermectin and collected Gasterophilus larvae from fecal samples each winter from 2007 to 2019.All 110 Przewalski’s horses studied were found to be infected by Gasterophilus spp.,and a total of 141379 larvae were collected.Six species of Gasterophilus were identified with the following prevalence:G.pecorum(100%),G.nasalis(96.36%),G.nigricornis(94.55%),G.haemorrhoidalis(56.36%),G.intestinalis(59.09%),and G.inermis(3.64%).The mean infection intensity of Gasterophilus spp.larvae in Przewalski’s horses was 1285±653.G.pecorum(92.96%±6.71%)was the most abundant species.The intensity of Gasterophilus spp.(r=–0.561,P<0.046)was significantly correlated with winter precipitation.Our findings confirmed that,in the Kalamaili Nature Reserve,gasterophilosis is a severe parasitic disease in Przewalski’s horses.Winter precipitation at the beginning of the year can indirectly affect the intensity and composition of Gasterophilus spp.in Przewalski’s horses at the end of the year.Therefore,the water-related ecological regulation should be carried out to help reduce the parasite infection of Przewalski’s horses.
基金National Natural Science Foundation of China(41221064)Specialized Scientific Research Project for Public Welfare Industries(Meteorology)(GYHY201306018)
文摘In this paper, the impact of ENSO on the precipitation over China in the winter half-year is investigated diagnostically. The results show that positive precipitation anomalies with statistical significance appear over southern China in El Nio episodes, which are caused by the enhanced warm and humid southwesterlies along the East Asian coast in the lower troposphere. The enhanced southwesterlies transport more water vapor to southern China, and the convergence of water vapor over southern China increases the precipitable water and specific humidity. In La Nia episodes,although atmospheric elements change reversely, they are not statistically significant as those in El Nio periods. The possible physical mechanism of the different impact of ENSO cycle on the precipitation over southern China is investigated by analyzing the intraseasonal oscillations(ISOs) in El Nio and La Nia winter half-years, respectively. By comparing the characteristics of ISOs in El Nio and La Nia, a physical mechanism is proposed to explain the different responses of the precipitation over China to ENSO in the winter half-year. In El Nio episodes, over western North Pacific(WNP) and South China Sea(SCS) the ISOs are inactive and exert little effect on water vapor transport and convergence, inducing positive precipitation anomalies with statistical significance over southern China in El Nio episodes. In La Nia episodes, however, the ISOs are active, which weaken the interannual variation signals of ENSO over WNP and southern China and lead to the insignificance of the interannual signals related to ENSO. Therefore, the different responses of precipitation over China to ENSO in the winter half-year are possibly caused by the difference of intraseasonal oscillations over WNP and SCS between El Nio and La Nia.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program of China (2019QZKK0208)the National Key Research and Development Program of China (2022YFE0136000,2023YFF0805104)+2 种基金the National Natural Science Foundation of China (U2242207,42305018,42105037)the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies (2020B1212060025)the Innovative Development Special Project of China Meteorological Administration (CXFZ2022J039,CXFZ2023J003).
文摘The Tibetan Plateau(TP)and the Arctic are the most sensitive regions to global climate change.However,the interdecadal varibility of winter extreme precipitation over the TP and its linkage with Arctic sea ice are still unclear.In this study,the characteristics and mechisnems of the TP extreme precipitation(TPEP)influenced by Arctic sea ice on interdecadal timescale are studied based on the daily precipitation,monthly sea ice concentration and ERA5 reanalysis data from 1980 to 2018.We found that the dominant mode of the TPEP in winter mostly exhibits a uniform spatial variation on the interdecadal timescale,with an opposite weak variation in the southeastern TP,and the Arctic sea ice concentration(SIC)before 2002 are larger than that after 2003.The interdecadal variation of TPEP is affected by two teleconnection wave trains regulated by the Barents and Kara Sea ice.In the light ice years,a remarkable positive geopotential height(HGT)anomaly appears over the Barents-Kara Sea and a remarkable negative HGT anomaly is located over the Lake Baikal.Two wave trains originating over the Barents-Kara Sea can be observed.The southern branch forms a wave train through the North Atlantic along the subtropical westerly jet stream,showing a‘+-+-+'pattern of HGT anomalies from Arctic to the TP.Negative HGT anomaly controls the western TP,which creates dynamic and water vapor conditions for the TPEP.The northern branch forms a wave train through the Lake Baikal and the southeast of the TP,showing a‘+-+'HGT anomaly distribution.Positive HGT anomaly controls the southeastern TP,which is not conducive to precipitation in the region.When the SIC in the Barents-Kara Sea increases,the situation is opposite.The above analysis also reveals the reason for the difference in the east-west distribution of the TPEP.
基金funded by the Special Fund for Agro-scientific Research in the Public Interest of China (201203031,201303133)the National Natural Science Foundation of China (31071367)
文摘To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.