The machine,a silver medal winnerfrom the state,is produced by theChangfeng Machinery General Factory.The products have been sold in the UK,Poland,Australia,Thailand,Singapore,
WEDM is used in machining conductive materials where it is required to obtained complicated and intricate shapes with high accuracy.Various applications are in the field of automobile,medical industries,aerospace etc....WEDM is used in machining conductive materials where it is required to obtained complicated and intricate shapes with high accuracy.Various applications are in the field of automobile,medical industries,aerospace etc.WEDM is an economical machining option with short product development cycle.Surface roughness,kerf width,Material removal rate,Recast layer hardness and surface microhardness in WEDM are most important responses.In this paper,effect of varied Wire tension on SR,KW,MRR,RCL hardness and surface microhardness on AISI 304 have been investigated.Pulse on time,pulse off time,current and dielectric fluid are taken as fixed parameter.Results show that Wire tension influences the SR,MRR and Surface microhardness and has no effect on kerf width in case of Stainless steel304.展开更多
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro...Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions.展开更多
文摘The machine,a silver medal winnerfrom the state,is produced by theChangfeng Machinery General Factory.The products have been sold in the UK,Poland,Australia,Thailand,Singapore,
文摘WEDM is used in machining conductive materials where it is required to obtained complicated and intricate shapes with high accuracy.Various applications are in the field of automobile,medical industries,aerospace etc.WEDM is an economical machining option with short product development cycle.Surface roughness,kerf width,Material removal rate,Recast layer hardness and surface microhardness in WEDM are most important responses.In this paper,effect of varied Wire tension on SR,KW,MRR,RCL hardness and surface microhardness on AISI 304 have been investigated.Pulse on time,pulse off time,current and dielectric fluid are taken as fixed parameter.Results show that Wire tension influences the SR,MRR and Surface microhardness and has no effect on kerf width in case of Stainless steel304.
文摘Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions.