期刊文献+
共找到344篇文章
< 1 2 18 >
每页显示 20 50 100
Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution 被引量:7
1
作者 Jianwei LI Youmin QIU +9 位作者 Junjie YANG Yinying SHENG Yanliang YI Xun ZENG Lianxi CHEN Fengliang YIN Jiangzhou SU Tiejun ZHANG Xin TONG Bin GUO 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期217-229,共13页
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac... Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively. 展开更多
关键词 AZ31 magnesium alloy wire and arc additive manufacturing(waam) Grain refinement Microstructure Intergranular corrosion
下载PDF
Study on anisotropy of microstructure and mechanical properties of AZ31 magnesium alloy fabricated by wire arc additive manufacturing
2
作者 Dong Ma Chun-jie Xu +4 位作者 Jun Tian Shang Sui Can Guo Xiang-quan Wu Zhong-ming Zhang 《China Foundry》 SCIE CAS CSCD 2023年第4期280-288,共9页
Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.... Based on wire arc additive manufacturing(WAAM)technology,AZ31 magnesium alloy in bulk was successfully fabricated,and its microstructure as well as mechanical properties in different planes were observed and analyzed.The AZ31 magnesium alloy has a similar microstructure in the building direction(Z)and travel direction(X),both of which are equiaxed grains.There are heat-affected zones(HAZs)with coarse grains below the fusion line.The second phase is primarily composed of the Mg17Al12 phase,which is evenly distributed in different directions.In addition,the residual stress varies in different directions.There is no significant difference in the hardness of the AZ31 alloy along the Z and X directions,with the average hardness being 68.4 HV and 67.9 HV,respectively.Even though the specimens’ultimate tensile strength along the travel direction is higher in comparison to that along the building direction,their differences in elongation and yield strength are smaller,indicating that the anisotropy of the mechanical properties of the material is small. 展开更多
关键词 magnesium alloy wire arc additive manufacturing ANISOTROPY MICROSTRUCTURE mechanical properties
下载PDF
Deformation Characteristics and Mechanical Properties of Ti/Al Bimetallic Composite Materials Fabricated by Wire Plus Arc Additive Manufacturing
3
作者 夏玉峰 ZHANG Xue +2 位作者 CHEN Lei JIANG Xianhong LIAO Hailong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期885-892,共8页
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ... We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures. 展开更多
关键词 wire plus arc additive manufacturing aluminium alloy titanium alloy bimetallic composite materials deformation mechanical properties
下载PDF
Wire arc additive manufacturing of a heat-resistant Al-Cu-Ag-Sc alloy:microstructures and high-temperature mechanical properties
4
作者 董博伦 蔡笑宇 +4 位作者 夏云浩 刘放 赵宏伟 林三宝 戴鸿滨 《China Welding》 CAS 2023年第4期1-10,共10页
With a high energy efficiency,low geometric limitation,and low cracking susceptivity to cracks,wire arc additive manufacturing(WAAM)has become an ideal substitute for casting in the manufacturing of load-bearing high ... With a high energy efficiency,low geometric limitation,and low cracking susceptivity to cracks,wire arc additive manufacturing(WAAM)has become an ideal substitute for casting in the manufacturing of load-bearing high strength aluminum components in aerospace industry.Recently,in scientific researches,the room temperature mechanical performance of additive manufactured high strength aluminum alloys has been continuously broken through,and proves these alloys can achieve comparable or even higher properties than the forged counterpart.Since the aluminum components for aerospace usage experience high-low temperature cycling due to the absence of atmosphere protection,the high temperature performances of additive manufactured high strength aluminum alloys are also important.However,few research focuses on that.A special 2319Ag Sc with 0.4 wt.%Ag and 0.2 wt.%Sc addition designed for high temperature application is deposited successfully via cold metal transfer(CMT)based on WAAM.The microstructures and high temperature tensile properties are investigated.The results show that the as-deposited 2319Ag Sc alloy presents an alternate distribution of columnar grains and equiaxed grains with no significant textures.Main second phases are Al_(2)Cu and Al3Sc,while co-growth of Al_(2)Cu and bulk Al_(3)Sc is found on the grain boundary.During manufacturing,nanoscale Al_(2)Cu can precipitate out from the matrix.Ag and Mg form nano-scaleΩphase on the Al_(2)Cu precipitates.At 260℃,average yield strengths in the horizontal direction and vertical direction are 87 MPa±2 MPa,87 MPa±4 MPa,while average ultimate tensile strengths are 140 MPa±7 MPa,141 MPa±11 MPa,and average elongations are 11.0%±2.5%,13.5%±3.0%.Anisotropy in different directions is weak. 展开更多
关键词 wire arc additive manufacturing Al-Cu-Ag-Sc heat resistance microstructure high temperature property
下载PDF
Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time 被引量:1
5
作者 Dong Ma Chunjie Xu +6 位作者 Shang Sui Jun Tian Can Guo Xiangquan Wu Zhongming Zhang Dan Shechtman Sergei Remennik 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4696-4709,共14页
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ... Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys. 展开更多
关键词 wire arc additive manufacturing Interlayer dwell time Strength-ductility Magnesium alloys
下载PDF
Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing 被引量:7
6
作者 Yangyang Guo Gaofeng Quan +4 位作者 Mert Celikin Lingbao Ren Yuhang Zhan Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1930-1940,共11页
To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated... To maximize the benefits of wire arc additive manufacturing(WAAM)processes,the effect of post-deposition heat treatment on the microstructure and mechanical properties of WAAM AZ80M magnesium(Mg)alloy was investigated.Three different heat treatment procedures(T4,T5 and T6)were performed.According to the results,after T4 heat treatment,the microsegregation of alloying elements was improved with the eutectic structure dissolved.Samples after T5 heat treatment inherited the net-like distribution of secondary phases similar to the as-deposited sample,where the eutectic structure covering the interdendritic regions and theβ-phase precipitated around the eutectic structure.After T6 heat treatment,the tinyβ-phases re-precipitated from the matrix and distributed in inner and outer of the grains.The hardness distribution of the samples went through T4 and T6 heat treatment was more uniform in comparison to that of T5 heat treated samples.The tensile test showed that the T6 heat treatment improved the strength and ductility,and the anisotropy between horizontal and vertical can be eliminated.Moreover,T4 treated samples exhibited highest ductility. 展开更多
关键词 wire arc additive manufacturing AZ80M magnesium alloy Heat treatment MICROSTRUCTURE Mechanical properties
下载PDF
Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing 被引量:6
7
作者 Yi-li Dai Sheng-fu Yu +1 位作者 An-guo Huang Yu-sheng Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期933-942,共10页
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an... A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application. 展开更多
关键词 wire and arc additive manufacturing high strength low alloy steel microstructure INCLUSIONS fine grain ferrite mechanical properties
下载PDF
Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method 被引量:4
8
作者 Zhi-qiang Liu Pei-lei Zhang +2 位作者 Shao-wei Li Di Wu Zhi-shui Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期783-791,共9页
Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts wer... Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area. 展开更多
关键词 wire arc additive manufacturing aluminum alloy cold metal transfer microstructure layer deposition
下载PDF
Determination of Surface Roughness in Wire and Arc Additive Manufacturing Based on Laser Vision Sensing 被引量:2
9
作者 Jun Xiong Yan-Jiang Li +1 位作者 Zi-Qiu Yin Hui Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第4期133-139,共7页
Wire and arc additive manufacturing(WAAM) shows a great promise for fabricating fully dense metal parts by means of melting materials in layers using a welding heat source. However, due to a large layer height produce... Wire and arc additive manufacturing(WAAM) shows a great promise for fabricating fully dense metal parts by means of melting materials in layers using a welding heat source. However, due to a large layer height produced in WAAM, an unsatisfactory surface roughness of parts processed by this technology has been a key issue. A methodology based on laser vision sensing is proposed to quantitatively calculate the surface roughness of parts deposited by WAAM.Calibrations for a camera and a laser plane of the optical system are presented. The reconstruction precision of the laser vision system is verified by a standard workpiece. Additionally, this determination approach is utilized to calculate the surface roughness of a multi-layer single-pass thin-walled part. The results indicate that the optical measurement approach based on the laser vision sensing is a simple and effective way to characterize the surface roughness of parts deposited by WAAM. The maximum absolute error is less than 0.15 mm. The proposed research provides the foundation for surface roughness optimization with different process parameters. 展开更多
关键词 wire and arc additive manufacturing Surface roughness measurement Laser vision sensing Three-dimensional reconstruction
下载PDF
Enhancing fatigue performance of AZ31 magnesium alloy components fabricated by cold metal transfer-based wire arc directed energy deposition through LPB
10
作者 Shambhu Kumar Manjhi Srikanth Bontha A.S.S.Balan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1638-1662,共25页
Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susc... Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications. 展开更多
关键词 wire arc additive manufacturing AZ31 Mg alloy Low plasticity burnishing Low cycle fatigue test Strain amplitude
下载PDF
Formability,microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding 被引量:11
11
作者 Yangyang Guo Gaofeng Quan +3 位作者 Yinglong Jiang Lingbao Ren Lingling Fan Houhong Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期192-201,共10页
Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructu... Wire arc additive manufacturing(WAAM)technology has been used to fabricate the multi-layer single-pass deposited wall of AZ80M magnesium(Mg)alloy by gas tungsten arc welding.The formability,thermal cycles,microstructural evolution and mechanical properties of the WAAM AZ80M Mg alloy were investigated.The results show that there was significant difference in the temperature variation and the geometries between the original several layers and the subsequent deposited layers.Owing to the arc energy input,the interpass temperature rised rapidly and then stabilized at 150℃.As a result,the width of the deposited wall increased and then kept stable.There were obvious differences in the microstructure of the WAAM AZ80M Mg alloy among the top zone,intermediate zone and bottom zone of deposited wall.During the arc deposition process,theβphase of the WAAM AZ80M Mg alloy redissolved due to the cyclic heat accumulation,and then precipitated in the grain boundary.The cyclic heat accumulation also led to weakening of dendrite segregation.From the substrate to the top zone,the hardness of the deposited wall decreased gradually,and the intermediate zone which was the main body of deposited wall had relatively uniform hardness.The tensile properties of the WAAM AZ80M Mg alloy were different between the vertical direction and the horizontal direction.And the maximum ultimate tensile strength of the WAAM AZ80M Mg alloy was 308 MPa which was close to that of the as-extruded AZ80M Mg alloy. 展开更多
关键词 wire arc additive manufacturing Magnesium alloy Thermal cycles Microstructure Mechanical properties
下载PDF
Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits 被引量:4
12
作者 Hao Zhong Bojin Qi +2 位作者 Baoqiang Cong Zewu Qi Hongye Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期174-180,共7页
Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive ... Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive manufacturing(WAAM) process. To identify its feasibility in WAAM procewire was produced and employed in the production of straight-walled components, using a WAAM system based on variable polarity gas tungsten arc welding(VP-GTAW) process. The influence of post-deposited heat treatment on the microstructure and property of the deposit was investigated using optical micrographs(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), hardness and tensile properties tests. Results revealed that the microstructures of AA2050 aluminum deposits varied with their location layers. The upper layers consisted of fine equiaxed grains, while the bottom layer exhibited a coarse columnar structure. Mechanical properties witnessed a significant improvement after post-deposited heat treatment, with the average micro-hardness reaching 141 HV and the ultimate tensile strength exceeding 400 MPa. Fracture morphology exhibited a typical ductile fracture. 展开更多
关键词 Aluminum-copper-lithium alloy wire arc additive manufacturing Heat treatment Mechanical properties
下载PDF
Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing 被引量:10
13
作者 赵鹏康 方魁 +2 位作者 唐成 牛建平 郭美玲 《China Welding》 CAS 2021年第2期17-24,共8页
In the paper, the finite element model(FEM) of wire arc additive manufacturing(WAAM) by TIG method was established by the ABAQUS soft, and the phase transformation latent heat was considered in the model. The evolutio... In the paper, the finite element model(FEM) of wire arc additive manufacturing(WAAM) by TIG method was established by the ABAQUS soft, and the phase transformation latent heat was considered in the model. The evolution rules of temperature field at the interlayer with the cooling time of 10 s, 30 s and 50 s were obtained by the model. The WAAM experiment were performed by 5356 aluminum alloy welding wire with φ1.2 mm, and the simulated temperature field were varified by the thermocouple. The result shows that the highest temperature at the molten pool center increases with the increased interlayers at the same interlayer cooling time;the highest temperature drops gradually and the decline is smaller with the increased interlayer cooling time at the same layer. No remelting occurs at the top layer, and at least two remelting times occur in the other layers, resulting in complex temperature field evolution. 展开更多
关键词 5356 aluminum alloy wire arc additive manufacturing temperature field interlayer cooling time
下载PDF
Self-Adaptive Control System for Additive Manufacturing Using Double Electrode Micro Plasma Arc Welding
14
作者 Nan Li Ding Fan +3 位作者 Jiankang Huang Shurong Yu Wen Yuan Miaomiao Han 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期285-298,共14页
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-... Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the control system’s performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part’s layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system. 展开更多
关键词 Double electrode microplasma arc welding additive manufacturing wire feed rate Torch stand-off distance Self-adaptive adjustment
下载PDF
Wire Arc Additive Manufactured CuMn_(13)Al_(7)High-Manganese Aluminium Bronze
15
作者 Chun Guo Baisong Hu +1 位作者 Baoli Wei Feng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期382-392,共11页
In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bro... In this work,high-manganese aluminium bronze CuMn_(13)Al_(7)samples were prepared by arc additive manufacturing technology.The phase composition,microstructure,and crystal structure of the high-manganese aluminium bronze CuMn_(13)Al_(7)arc additive manufactured samples were analysed using direct-reading spectrometer,metallographic microscope,scanning electron microscope,and transmission electron microscope.The micro-hardness tester,tensile tester,impact tester,and electrochemical workstation were also used to test the performance of the CuMn_(13)Al_(7)samples.By studying the microstructure and properties of the CuMn_(13)Al_(7)samples,it was found that preparation of the samples by the arc additive manufacturing technology ensured good forming quality,almost no defects,and good metallurgical bonding inside the sample.The metallographic structure(α+β+point phase)mainly comprises the following:the metallographic structure in the equiaxed grain region has an obvious grain boundaryα;the metallographic structure in the remelting region has no obvious grain boundaryα;the thermal influence on the metallographic structure produced a weaker grain boundaryαthan the equiaxed grain region.The transverse and longitudinal cross sections of the sample had uniform microhardness distributions,and the average microhardness values were 190.5 HV0.1 and 192.7 HV0.1,respectively.The sample also had excellent mechanical properties:yield strength of 301 MPa,tensile strength of 633 MPa,elongation of 43.5%,reduction of area by 58%,Charpy impact value of 68 J/cm^(2)at–20℃,and dynamic potential polarisation curve test results.Further,it was shown that the average corrosion potential of the sample was–284.5 mV,and the average corrosion current density was 4.1×10–3 mA/cm^(2). 展开更多
关键词 CuMn_(13)Al_(7) High-manganese aluminium bronze wire arc additive manufacturing Microstructure Mechanical properties
下载PDF
Solidification microstructure evolution and its correlations with mechanical properties and damping capacities of Mg-Al-based alloy fabricated using wire and arc additive manufacturing 被引量:2
16
作者 Zihong Wang Jingfeng Wang +6 位作者 Xin Lin Nan Kang Tianchi Zhang Yanfang Wang Li Wang Cong Dang Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期28-44,共17页
Magnesium(Mg)alloys,as the lightest metal structural material with good damping capacities,have im-portant application prospects in realizing structural lightweight and vibration reduction.However,their engineering ap... Magnesium(Mg)alloys,as the lightest metal structural material with good damping capacities,have im-portant application prospects in realizing structural lightweight and vibration reduction.However,their engineering application is greatly limited by poor plastic formability.Wire and arc additive manufactur-ing(WAAM)provides a potential approach for fabricating large-scale Mg alloy components with high manufacturing flexibility.In this study,the evolution of the solidification microstructure of a WAAM-processed Mg-Al-based alloy was quantitatively analyzed based on the analytical models;then,the cor-relations between the solidification microstructure and mechanical properties/damping capacities were investigated.The results revealed that the WAAM-processed Mg-Al-based alloy with an equiaxed-grain-dominated microstructure displayed a simultaneous enhancement in mechanical properties and damping capacities compared to those of the cast Mg-Al-based alloy.The good combination of mechanical prop-erties and damping capacities are mainly attributed to the weakened basal texture with a relatively high Schmid factor for basalslip,the twinning-induced plasticity(TWIP)effect associated with the profuse{10-12}tensile twinning,and the relatively high dislocation density caused by the thermal stress during the WAAM process. 展开更多
关键词 wire and arc additive manufacturing Magnesium alloy Microstructure evolution Mechanical properties Damping capacities
原文传递
Influence of Ship-based Vibration on Characteristics of Arc and Droplet and Morphology in Wire Arc Additive Manufacturing
17
作者 Xuezhi Shi Chengheng Cai +1 位作者 Pengfei Bao Zhenhua Li 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第1期94-103,共10页
To explore the feasibility of using wire arc additive manufacturing(WAAM)for forming and repairing marine components during ship navigation,this study conducted deposition experiments of ER50-6 steel and investigated ... To explore the feasibility of using wire arc additive manufacturing(WAAM)for forming and repairing marine components during ship navigation,this study conducted deposition experiments of ER50-6 steel and investigated the interference of ship-based vibrations on the WAAM equipment and influence of the characteristics of the arc droplets and sample morphology.The results revealed that the WAAM equipment vibrated with the external vibrations from the surrounding environment,and the welding gun and base plate produced dissimilar vibrations,which yielded unstable arc shapes resembling a bell,trumpet,fan,broom,and other irregular shapes.The mode of the droplet transfer ranged from the stable spray transfer mode to extensive amounts of large droplet transfer and short-circuit transfer.Although the morphology of the obtained sample deteriorated,the fully dense and defect-free interior demonstrated the applicability of ship-based WAAM. 展开更多
关键词 wire arc additive manufacturing VIBRATION Ship arc Molten droplet MORPHOLOGY
原文传递
Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method 被引量:2
18
作者 贾金龙 赵玥 +2 位作者 董明晔 吴爱萍 李权 《China Welding》 EI CAS 2020年第2期1-8,共8页
Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A ... Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source(MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function(STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively.The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts. 展开更多
关键词 wire arc additive MANUFACTURE numerical simulation RESIDUAL stress and deformation TEMPERATURE function method
下载PDF
A Comparative Study on the Microstructures and Mechanical Properties of Two Kinds of Iron-Based Alloys by WAAM
19
作者 夏玉峰 陈沿宏 +2 位作者 PENG Mengxia TENG Haihao ZHANG Xue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期450-459,共10页
In order to adapt to the high temperature and heavy load process environment of large forgings,a novel die with"fist-like"structure is designed.The“fist-like”die mainly consists of“skin”layer,“bone”lay... In order to adapt to the high temperature and heavy load process environment of large forgings,a novel die with"fist-like"structure is designed.The“fist-like”die mainly consists of“skin”layer,“bone”layer and matrix.To obtain the material with good supportability and good bonding strength with the“skin”layer,iron-based alloys RMD248 and CN72 were selected to make the"bone"layer,and the properties were compared.In this paper,the"bone"layer and the"skin"layer(CHN327)were surfaced on 5CrNiMo matrix by wire arc additive manufacture(WAAM).Then,cyclic heating to 500℃and thermal compression with a maximum deformation of 30%were adapted to test the high temperature mechanical properties.The microstructure changes before and after thermal cycles and compressions were observed by optical microscopy(OM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS)and scanning electron microscopy(SEM).The results show that CN72 has more carbides than RMD248 at the joint surface,which makes it easy to form brittle fracture at the joint.Mechanical properties were tested by using microhardness machine.Meanwhile,hot tensile tests were performed to study bonding strength between the“skin”layer and the“bone”layer.The results show that the RMD248 has stable microhardness distribution while the microhardness of CN72 decreases with the distance from the interface.And the ultimate tensile strength between CN72 and CHN327 is higher than RMD248 in the temperature range of 400-450℃.It can be inferred that CN72 has higher inter-layer wear resistance and RMD248 has more stable high temperature performance. 展开更多
关键词 iron-based alloy wire arc additive manufacture DIE microstructure mechanical properties
下载PDF
铝合金熔敷层数对添加Nb中间层钛/铝异种合金CMT-WAAM构件微观组织影响
20
作者 吴定勇 张超 +3 位作者 杨辉 许乃强 申俊琦 梁瑛 《焊接技术》 2023年第1期1-6,I0007,共7页
针对采用基于冷金属过渡(CMT)技术所制备的添加Nb中间层钛/铝异种合金电弧增材制造(WAAM)试样,研究了铝合金熔敷沉积层数对试样微观组织的影响规律。结果表明:随着铝合金熔敷沉积层数由1层增加至5层,添加Nb中间层钛/铝异种合金试样中第... 针对采用基于冷金属过渡(CMT)技术所制备的添加Nb中间层钛/铝异种合金电弧增材制造(WAAM)试样,研究了铝合金熔敷沉积层数对试样微观组织的影响规律。结果表明:随着铝合金熔敷沉积层数由1层增加至5层,添加Nb中间层钛/铝异种合金试样中第1层铝合金熔敷沉积层发生重熔的次数逐渐增加,使得铝合金沉积层中所析出的Al3Nb金属间化合物数量有所减少,且尺寸也有所减小;随着铝合金熔敷沉积层数的增加,铝合金熔敷沉积层底部所析出的Al3Nb金属间化合物呈岛状-长条状-短棒状的分布特征;分别熔敷沉积1层、3层和5层铝合金时,添加Nb中间层钛/铝异种合金试样中铝合金熔敷沉积层与Nb中间层之间均会形成Al3Nb金属间化合物反应层,反应层的厚度分别为1.1~2.9μm, 1.3~3.6μm和1.4~3.6μm。 展开更多
关键词 钛/铝异种合金 Nb中间层 冷金属过渡技术 电弧增材制造 微观组织
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部