This meta-analysis compared the therapeutic effect of cable pin system(CPS) with K-wire tension band(KTB) in the treatment of patella fractures among Chinese Han population. The databases of PubM ed, Cochrane libr...This meta-analysis compared the therapeutic effect of cable pin system(CPS) with K-wire tension band(KTB) in the treatment of patella fractures among Chinese Han population. The databases of PubM ed, Cochrane library, China National Knowledge Infrastructure(CNKI), Chinese Wan Fang and Chinese VIP were searched for studies on CPS versus KTB in the treatment of patella fractures among Chinese Han population. Literatures were screened according to the inclusion and exclusion criteria. The quality of the studies was assessed, and meta-analysis was performed using the Cochrane Collaboration's REVMAN 5.3 software. A total of 932 patients from 15 studies were included in this meta-analysis(426 fractures treated with CPS and 506 fractures treated with KTB). There were significant differences in duration of hospital stay [mean difference(MD)=–1.07; 95% confidence interval(CI): –1.71 to –0.43], fracture healing time(MD=–1.23; 95% CI: –1.68 to –0.77), flexion degree of knee joint at 6 th month after operation(MD=14.82; 95% CI: 10.93 to 18.71), incidence of postoperative complication [risk ratio(RR)=0.16; 95% CI: 0.09 to 0.27] and excellent-good rate of B?stman score(RR=1.09; 95% CI: 1.03 to 1.16) between the CPS group and KTB group, while no significant difference was found in operative time between the two groups(MD=–4.52; 95% CI: –11.70 to 2.67). For the treatment of patella fractures among Chinese Han population, limited evidence suggests that the CPS is more suitable than the KTB when considering the hospital stay, fracture healing time, flexion degree of knee at 6 th month after operation, incidence of postoperative complication and excellent-good rate of B?stman joint score. Due to the limitation of high quality evidence and sample size, more large-scale randomized controlled trials are needed to validate the findings in the future.展开更多
A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,ca...A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.展开更多
In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability,a new instrument for detecting and processing the signal of flux leakage caus...In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability,a new instrument for detecting and processing the signal of flux leakage caused by bro-ken wires of coal mine-hoist cables is investigated. The principle of strong magnetic detection was adopted in the equipment. Wires were magnetized by a pre-magnetic head to reach magnetization saturation. Our special feature is that the number of flux-gates installed along the circle direction on the wall of sensors is twice as large as the number of strands in the wire cable. Neighboring components are connected in series and the interference on the surface of the wire cable,produced by leakage from the flux field of the wire strands,is efficiently filtered. The sampled signal se-quence produced by broken wires,which is characterized by a three-dimensional distribution of the flux-leakage field on the surface of the wire cable,can be dimensionally condensed and characteristically extracted. A model of a BP neu-ral network is built and the algorithm of the BP neural network is then used to identify the number of broken wires quantitatively. In our research,we used a 6×37+FC,Φ24 mm wire cable as our test object. Randomly several wires were artificially broken and damaged to different degrees. The experiments were carried out 100 times to obtain data for 100 groups from our samples. The data were then entered into the BP neural network and trained. The network was then used to identify a total 16 wires,broken at five different locations. The test data proves that our new device can enhance the precision in detecting broken and damaged wires.展开更多
Objective:To observe clinical effects of pedicle screw fixation combined with cable wires and bone graft and cannulated compression screws on adult multi-segment lumbar spondylolysis.Methods:70 cases of patients with ...Objective:To observe clinical effects of pedicle screw fixation combined with cable wires and bone graft and cannulated compression screws on adult multi-segment lumbar spondylolysis.Methods:70 cases of patients with multi-segment lumbar spondylolysis were selected in our hospital.According to different surgical schemes,these patients were divided into the observation group(35 cases)and the control group(35 cases).The observation group received pedicle screw fixation combined with cable wires and bone graft and the control group received cannulated compression screw fixation.Macnab criteria were adopted to implement a therapeutic evaluation of two groups of patients to make an observation and comparison of the excellent and good rate of surgery and a series of indicators including perioperative clinical effects,intraoperative blood loss,duration of surgery,hospital length of stay(HLOS),visual analogue scale(VAS),Oswestry disability index and Japanese Orthopaedic Association(JOA)score.Results:The excellent and good rate of the observation group was 97.14%,and that of the control group was 82.86%,the difference between two groups was statistically significant(χ^(2)=6.248,p=0.012).The differences in intraoperative blood loss,duration of surgery and HLOS between two groups were statistically significant(t=-4.55,t=-4.55,t=-4.55;p<0.05).Oswestry index,VAS score and JOA score of the observation group were(2.4±0.9),(28.5±6.4)and(27.1±3.1)respectively,and these of the control group were(3.5±1.2),(37.1±7.8)and(21.3±2.7)respectively,the differences between two groups were statistically significant(t=4.338,t=5.043,t=8.347,p<0.05).Conclusions:Pedicle screw combined with immobilized implantation bone by wirerope has an excellent clinical effect on the treatment of adult multi-segment lumbar spondylolysis,and it has a series of advantages such as fast postoperative recovery,small surgical trauma and so on.In addition,this technique can also restore the stability of spinal segments and relieve pains to a greater degree.展开更多
Additive manufacturing is a very promising manufacturing method widely used in various industries.In this study,for the first time,a new type of combined cable wire(CCW)with multi-element composition has been designed...Additive manufacturing is a very promising manufacturing method widely used in various industries.In this study,for the first time,a new type of combined cable wire(CCW)with multi-element composition has been designed and developed for arc additive manufacturing(AAM)of non-equiatomic Al-Co-Cr-FeNi high-entropy alloy.CCW composed of 7 filaments and 5 elements has the advantages of high deposition efficiency,self-rotation of welding arc and energy saving capability.Thin HEA walls were fabricated under pure argon gas using cold metal transfer technology.Microstructural observations of the developed HEA reveal(i)BCC and FCC phases,(ii)Good bonding between layers and(iii)defect-free microstructure.The developed alloy exhibits high compression strength(~2.8 GPa)coupled with high plastic strain(~42%)values(possess both strength and ductility).It has been identified that by varying the heat input via torch travel speed,the microstructure and mechanical properties of the HEA can be controlled.From this feasibility study,it has been proved that the innovative CCW method can be used to manufacture HEAs with CCW-AAM.Further,the study highlights the advantage of the rapid cooling involved in the CCW-AAM process which gives rise to superior mechanical properties.展开更多
A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical met...A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution.The results show that anode activation of steel wire mainly occurs during pre-corrosion,where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed,while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest.During the intermediate and late immersion periods, a passive film is generated on the surface of steel wires,which are gradually damaged with the passage of time.Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential. Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy(EIS)of steel wires over various corrosive times and different surface treatments,which indicate good fitting results. The double electrical layer charge-transfer resistance increases in the sequence:bare steel wire, untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn,which is consistent with their polarization curves.The oil layer provides a certain protective effect on untreated steel wires,but its effect is not entirely clear.展开更多
The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed usi...The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed using an optical microscope and a scanning electron microscope equipped with an energy-dispersive spectrometer.The bonding force between the hot-dip coating and steel wire was determined by the winding test.The corrosion resistance of the steel wire hot-dip coating was tested by the electrochemical workstation.The hot-dip Zn-5A1 alloy coating has a corrosion-resistant structure composed of a zinc-rich phase and an aluminum-rich phase.Due to the enhanced bonding force,the micro structure of the hot-dip coating of the Zn-5A1 alloy with rare earth elements is more compact and uniform than that without rare earth elements.The addition of rare earth elements improves the corrosion resistance of Zn-5A1 alloy coated steel wire.Due to the rare earth segregation,which prevents the corrosion of the grain boundary and enhances the anti-intergranular corrosion performance,steel wire exhibits the optimum corrosion resistance when the content of rare earth elements is 0.08 wt.%.展开更多
The largest wire and cable production enterprise in the northwestern region-Qinghai Xingming Electric Power Material Co.,Ltd.has been officially put into production,meaning that Qinghai will be able to selfproduce med...The largest wire and cable production enterprise in the northwestern region-Qinghai Xingming Electric Power Material Co.,Ltd.has been officially put into production,meaning that Qinghai will be able to selfproduce medium and high voltage or even EHV crosslinked power cables and develop and produce differentiated new products such as high-altitude cold-resistant photovoltaic展开更多
Directly buried metal optical cable is a form of erecting optical fiber ring network communication system in wind farms. Although the directly buried optical cable is much less than the overhead optical cable affected...Directly buried metal optical cable is a form of erecting optical fiber ring network communication system in wind farms. Although the directly buried optical cable is much less than the overhead optical cable affected by lightning, sometimes lightning damaging optical cable and flashover discharge accidents of optical cable port occurred. In this paper, the amplitude spectrum of lightning wave, the breakdown depth and breakdown distance of lightning wave to soil, the metal components of optical cable port and the impedance characteristics of grounding wire are systematically analyzed, and the prevention methods of directly buried optical cable in wind farm to avoid lightning damage are proposed.展开更多
The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on ca...The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on cable force and stress distribution state of steel wires was put forward. By establishing the bridge-cable and cable-steel wires model, the broken wires sample database was simulated numerically. A method of the characterization cable state pattern which can both represent the degree and location of broken wires inside a cable was put forward. The training and predicting results of the sample database by the back propagation (BP) neural network showed that the proposed broken wires diagnosis method was feasible and expanded the broken wires diagnosis research area by using the smart cable which was used to be only representing cable force.展开更多
Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workl...Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workload and increase safety. Therefore, a cable detection radar system is developed The real-time dynamic imaging synchronizing with radar space scanning has been implemented in developed ladar system. The requirements of the flight mission to prevent "wire strike" are analyzed and estimated, the advantages and disadvantages of the millimeter wave system with the laser system are weighted The result shows that Laser system is the best suited for helicopter avoidance obstacle. In addition, several design gist of detecting wire radar that was used in the developed ladar system is proposed and the developed zero backlash imaging technology and several advanced warning function are described. The detailed results of system ground tests and the performances description are presented The ground test of the developed ladar system has demonstrated that the developed imaging ladar system performance can achieve and satisfy the requirements of the mission to prevent "wire strike".展开更多
The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed ...The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.展开更多
This paper introduces a new-developed mine fire-resistant optical fiber cable (OFC)KL5004,its structural characteristics, main feature, the theory about fire resistance and its application in high output and efficienc...This paper introduces a new-developed mine fire-resistant optical fiber cable (OFC)KL5004,its structural characteristics, main feature, the theory about fire resistance and its application in high output and efficiency mine.展开更多
1. Southern Coastal Optical Cable Engineering Project. The cable was completed and put into operation in 1992, and has a total length of 2,800km, starting from Nanjing in the north, via Shanghai, Hangzhou, Fuzhou, Xia...1. Southern Coastal Optical Cable Engineering Project. The cable was completed and put into operation in 1992, and has a total length of 2,800km, starting from Nanjing in the north, via Shanghai, Hangzhou, Fuzhou, Xiamen, Huizhou, leading to Guangzhou in the south, covering Jiangsu, Shanghai, Zhejiang, Fujian and Guangdong. The whole line has展开更多
A key project of the state, the Beijing-Taiyuan-Xi’an optical cable communications trunk, is one of the 22 optical cables planned to be laid by the Ministry of Post and Telecommunications during the Eighth Five Year....A key project of the state, the Beijing-Taiyuan-Xi’an optical cable communications trunk, is one of the 22 optical cables planned to be laid by the Ministry of Post and Telecommunications during the Eighth Five Year. Plan. This communication cable trunk covers a distance of 1771 km, starting from Beijing and going via Hebei and Shanxi to Xi’an in Shaanxi, linking two provincial capitals, one municipality directly under the jurisdiction of the central government, seven other cities and 32 counties.展开更多
The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time parab...The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long- term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency in- terference (RFI). These three types of sensors are evaluated from the view of EMIfRFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151 A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMIfRF1 levels are typically below the background noise of the ane- choic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable ten- sion. The proposed study is also a reference to the monitoring equipment selection of other radio tele- scopes and large structures.展开更多
Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav...Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).展开更多
文摘This meta-analysis compared the therapeutic effect of cable pin system(CPS) with K-wire tension band(KTB) in the treatment of patella fractures among Chinese Han population. The databases of PubM ed, Cochrane library, China National Knowledge Infrastructure(CNKI), Chinese Wan Fang and Chinese VIP were searched for studies on CPS versus KTB in the treatment of patella fractures among Chinese Han population. Literatures were screened according to the inclusion and exclusion criteria. The quality of the studies was assessed, and meta-analysis was performed using the Cochrane Collaboration's REVMAN 5.3 software. A total of 932 patients from 15 studies were included in this meta-analysis(426 fractures treated with CPS and 506 fractures treated with KTB). There were significant differences in duration of hospital stay [mean difference(MD)=–1.07; 95% confidence interval(CI): –1.71 to –0.43], fracture healing time(MD=–1.23; 95% CI: –1.68 to –0.77), flexion degree of knee joint at 6 th month after operation(MD=14.82; 95% CI: 10.93 to 18.71), incidence of postoperative complication [risk ratio(RR)=0.16; 95% CI: 0.09 to 0.27] and excellent-good rate of B?stman score(RR=1.09; 95% CI: 1.03 to 1.16) between the CPS group and KTB group, while no significant difference was found in operative time between the two groups(MD=–4.52; 95% CI: –11.70 to 2.67). For the treatment of patella fractures among Chinese Han population, limited evidence suggests that the CPS is more suitable than the KTB when considering the hospital stay, fracture healing time, flexion degree of knee at 6 th month after operation, incidence of postoperative complication and excellent-good rate of B?stman joint score. Due to the limitation of high quality evidence and sample size, more large-scale randomized controlled trials are needed to validate the findings in the future.
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036)
文摘A cable net structure is selected to support its reflecting triangular aluminum panels of FAST(five-hundred-meter aperture spherical radio telescope).To ensure the security and stability of the supporting structure,cable force of typical cables must be monitored on line.Considering the stringent requirements in installation,accuracy,long-term stability and EMI(Electromagnetic interference),most of the commonly used cable force measurement methods or sensors are not suitable for the cable force monitoring of the supporting cable-net of FAST.A method is presents to accomplish the cable force monitoring,which uses a vibrating wire strain gauge to monitor the strain of linear strain area at the anchor head.Experiments have been carried out to verify the feasibility.The method has a series of advantages,such as high reliability,high accuracy,good dynamic performance and durability,easiness of maintenance,technical maturity in industry and EMI shielding.Theoretical analysis shows that there is a linear relationship between the cable body force and anchor head surface strain,and experimental results proves a good linear relationship with excellent repeatability between the cable body force and anchor head surface strain measured by the vibrating wire strain gauge,with a linear fit better than 0.98.Mean square error in practical measuring is 2.5t.The relative error is better than 4%within the scope of the cable force in FAST operation which meets practical demand in FAST engineering.
文摘In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability,a new instrument for detecting and processing the signal of flux leakage caused by bro-ken wires of coal mine-hoist cables is investigated. The principle of strong magnetic detection was adopted in the equipment. Wires were magnetized by a pre-magnetic head to reach magnetization saturation. Our special feature is that the number of flux-gates installed along the circle direction on the wall of sensors is twice as large as the number of strands in the wire cable. Neighboring components are connected in series and the interference on the surface of the wire cable,produced by leakage from the flux field of the wire strands,is efficiently filtered. The sampled signal se-quence produced by broken wires,which is characterized by a three-dimensional distribution of the flux-leakage field on the surface of the wire cable,can be dimensionally condensed and characteristically extracted. A model of a BP neu-ral network is built and the algorithm of the BP neural network is then used to identify the number of broken wires quantitatively. In our research,we used a 6×37+FC,Φ24 mm wire cable as our test object. Randomly several wires were artificially broken and damaged to different degrees. The experiments were carried out 100 times to obtain data for 100 groups from our samples. The data were then entered into the BP neural network and trained. The network was then used to identify a total 16 wires,broken at five different locations. The test data proves that our new device can enhance the precision in detecting broken and damaged wires.
文摘Objective:To observe clinical effects of pedicle screw fixation combined with cable wires and bone graft and cannulated compression screws on adult multi-segment lumbar spondylolysis.Methods:70 cases of patients with multi-segment lumbar spondylolysis were selected in our hospital.According to different surgical schemes,these patients were divided into the observation group(35 cases)and the control group(35 cases).The observation group received pedicle screw fixation combined with cable wires and bone graft and the control group received cannulated compression screw fixation.Macnab criteria were adopted to implement a therapeutic evaluation of two groups of patients to make an observation and comparison of the excellent and good rate of surgery and a series of indicators including perioperative clinical effects,intraoperative blood loss,duration of surgery,hospital length of stay(HLOS),visual analogue scale(VAS),Oswestry disability index and Japanese Orthopaedic Association(JOA)score.Results:The excellent and good rate of the observation group was 97.14%,and that of the control group was 82.86%,the difference between two groups was statistically significant(χ^(2)=6.248,p=0.012).The differences in intraoperative blood loss,duration of surgery and HLOS between two groups were statistically significant(t=-4.55,t=-4.55,t=-4.55;p<0.05).Oswestry index,VAS score and JOA score of the observation group were(2.4±0.9),(28.5±6.4)and(27.1±3.1)respectively,and these of the control group were(3.5±1.2),(37.1±7.8)and(21.3±2.7)respectively,the differences between two groups were statistically significant(t=4.338,t=5.043,t=8.347,p<0.05).Conclusions:Pedicle screw combined with immobilized implantation bone by wirerope has an excellent clinical effect on the treatment of adult multi-segment lumbar spondylolysis,and it has a series of advantages such as fast postoperative recovery,small surgical trauma and so on.In addition,this technique can also restore the stability of spinal segments and relieve pains to a greater degree.
基金the National Natural Science Foundation of China(No.51975419)。
文摘Additive manufacturing is a very promising manufacturing method widely used in various industries.In this study,for the first time,a new type of combined cable wire(CCW)with multi-element composition has been designed and developed for arc additive manufacturing(AAM)of non-equiatomic Al-Co-Cr-FeNi high-entropy alloy.CCW composed of 7 filaments and 5 elements has the advantages of high deposition efficiency,self-rotation of welding arc and energy saving capability.Thin HEA walls were fabricated under pure argon gas using cold metal transfer technology.Microstructural observations of the developed HEA reveal(i)BCC and FCC phases,(ii)Good bonding between layers and(iii)defect-free microstructure.The developed alloy exhibits high compression strength(~2.8 GPa)coupled with high plastic strain(~42%)values(possess both strength and ductility).It has been identified that by varying the heat input via torch travel speed,the microstructure and mechanical properties of the HEA can be controlled.From this feasibility study,it has been proved that the innovative CCW method can be used to manufacture HEAs with CCW-AAM.Further,the study highlights the advantage of the rapid cooling involved in the CCW-AAM process which gives rise to superior mechanical properties.
基金supported by the National Natural Science Foundation of China(No.50875252)the Program for New Century Excellent Talents in University(No.NCET-06-0479).
文摘A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution.The results show that anode activation of steel wire mainly occurs during pre-corrosion,where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed,while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest.During the intermediate and late immersion periods, a passive film is generated on the surface of steel wires,which are gradually damaged with the passage of time.Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential. Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy(EIS)of steel wires over various corrosive times and different surface treatments,which indicate good fitting results. The double electrical layer charge-transfer resistance increases in the sequence:bare steel wire, untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn,which is consistent with their polarization curves.The oil layer provides a certain protective effect on untreated steel wires,but its effect is not entirely clear.
基金The authors would like to acknowledge the support from Key-Area Research and Development Program of Guangdong Province(2019B111106002)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB460023).
文摘The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed using an optical microscope and a scanning electron microscope equipped with an energy-dispersive spectrometer.The bonding force between the hot-dip coating and steel wire was determined by the winding test.The corrosion resistance of the steel wire hot-dip coating was tested by the electrochemical workstation.The hot-dip Zn-5A1 alloy coating has a corrosion-resistant structure composed of a zinc-rich phase and an aluminum-rich phase.Due to the enhanced bonding force,the micro structure of the hot-dip coating of the Zn-5A1 alloy with rare earth elements is more compact and uniform than that without rare earth elements.The addition of rare earth elements improves the corrosion resistance of Zn-5A1 alloy coated steel wire.Due to the rare earth segregation,which prevents the corrosion of the grain boundary and enhances the anti-intergranular corrosion performance,steel wire exhibits the optimum corrosion resistance when the content of rare earth elements is 0.08 wt.%.
文摘The largest wire and cable production enterprise in the northwestern region-Qinghai Xingming Electric Power Material Co.,Ltd.has been officially put into production,meaning that Qinghai will be able to selfproduce medium and high voltage or even EHV crosslinked power cables and develop and produce differentiated new products such as high-altitude cold-resistant photovoltaic
基金Supported by Regional Lightning Protection Engineering Technology Research and Development Project in Guangdong Yuedian Dianbai Wind Farm (GDW-PK-21022 Phase II)。
文摘Directly buried metal optical cable is a form of erecting optical fiber ring network communication system in wind farms. Although the directly buried optical cable is much less than the overhead optical cable affected by lightning, sometimes lightning damaging optical cable and flashover discharge accidents of optical cable port occurred. In this paper, the amplitude spectrum of lightning wave, the breakdown depth and breakdown distance of lightning wave to soil, the metal components of optical cable port and the impedance characteristics of grounding wire are systematically analyzed, and the prevention methods of directly buried optical cable in wind farm to avoid lightning damage are proposed.
基金The research work reported in this paper was supported by the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, China. Thanks for the support of the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-090) and the National Natural Science Foundation of China (Major Program: 61290310). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on cable force and stress distribution state of steel wires was put forward. By establishing the bridge-cable and cable-steel wires model, the broken wires sample database was simulated numerically. A method of the characterization cable state pattern which can both represent the degree and location of broken wires inside a cable was put forward. The training and predicting results of the sample database by the back propagation (BP) neural network showed that the proposed broken wires diagnosis method was feasible and expanded the broken wires diagnosis research area by using the smart cable which was used to be only representing cable force.
基金Supported by Electronic Science Research Institute of China (No. BD02371)
文摘Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workload and increase safety. Therefore, a cable detection radar system is developed The real-time dynamic imaging synchronizing with radar space scanning has been implemented in developed ladar system. The requirements of the flight mission to prevent "wire strike" are analyzed and estimated, the advantages and disadvantages of the millimeter wave system with the laser system are weighted The result shows that Laser system is the best suited for helicopter avoidance obstacle. In addition, several design gist of detecting wire radar that was used in the developed ladar system is proposed and the developed zero backlash imaging technology and several advanced warning function are described. The detailed results of system ground tests and the performances description are presented The ground test of the developed ladar system has demonstrated that the developed imaging ladar system performance can achieve and satisfy the requirements of the mission to prevent "wire strike".
基金Supported by the National Natural Science Foundation ofChina (60537050)
文摘The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.
文摘This paper introduces a new-developed mine fire-resistant optical fiber cable (OFC)KL5004,its structural characteristics, main feature, the theory about fire resistance and its application in high output and efficiency mine.
文摘1. Southern Coastal Optical Cable Engineering Project. The cable was completed and put into operation in 1992, and has a total length of 2,800km, starting from Nanjing in the north, via Shanghai, Hangzhou, Fuzhou, Xiamen, Huizhou, leading to Guangzhou in the south, covering Jiangsu, Shanghai, Zhejiang, Fujian and Guangdong. The whole line has
文摘A key project of the state, the Beijing-Taiyuan-Xi’an optical cable communications trunk, is one of the 22 optical cables planned to be laid by the Ministry of Post and Telecommunications during the Eighth Five Year. Plan. This communication cable trunk covers a distance of 1771 km, starting from Beijing and going via Hebei and Shanxi to Xi’an in Shaanxi, linking two provincial capitals, one municipality directly under the jurisdiction of the central government, seven other cities and 32 counties.
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036,11303059)
文摘The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long- term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency in- terference (RFI). These three types of sensors are evaluated from the view of EMIfRFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151 A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMIfRF1 levels are typically below the background noise of the ane- choic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable ten- sion. The proposed study is also a reference to the monitoring equipment selection of other radio tele- scopes and large structures.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).