Using the adoption and expansion of wired telegraph in China during the late 19^(th) century,this paper investigates the effect of cost reductions for knowledge exchange on China’s industrial growth before the outbre...Using the adoption and expansion of wired telegraph in China during the late 19^(th) century,this paper investigates the effect of cost reductions for knowledge exchange on China’s industrial growth before the outbreak of the War of Resistance Against Japanese Aggression(1931-1945),thus testing Baldwin’s theory of“the Great Convergence”in which developing countries are empowered by information and communication technologies.Based on panel data of 1858-1937,we found that wired telegraph access had a significantly positive effect,as well as a long-term growth effect,on the entry of industrial enterprises.Our mechanism analysis indicates that wired telegraph access accelerated early-stage industrialization in localities by encouraging market integration,human capital accumulation,and auxiliary commercial organizations.Only a few countries firmly asserted their telegraph sovereignty and set up their own workforce educational system during telegraph adoption.This explains why the Great Convergence arising from technology importation only occurred in a small number of countries.Our findings contribute to understanding the source of China’s modern industrial progress,as well as why global inequities remain.展开更多
It is difficult to find the projectile when people want to get the penetration data in a hard recovery method,so a recovery system of penetration data is designed based on an ejection mode from the projectile base and...It is difficult to find the projectile when people want to get the penetration data in a hard recovery method,so a recovery system of penetration data is designed based on an ejection mode from the projectile base and a method of wired transmission,at the same time,the system was sealed with a designed sealing device,the working principle of which was introduced.Using Fluent as the simulation platform,the transient pressure of seal cavity was simulated based on the change of chamber pressure,and steady-state pressure of seal clearance and seal cavity were simulated based on the maximum chamber pressure.The sealing performance was tested by apressure test system.The results of simulation and experiment show that the maximum pressure of seal cavity is 139.4kPa when the maximum chamber pressure is 242.9MPa and the maximum temperature of gunpowder explosive gas is2 166.5K,so the sealing performance can be assured.The sealing device can be taken as a reference in sealing research on gunpowder gas at the bottom of projection.展开更多
For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network top...For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network topology and the performance improvement of the networks.However,there are many factors affecting the performance of the networks,and the relation among them is also complicated.How to evaluate the performance of the wired LANs more accurately has been a heavy challenge in the network research.In order to solve the problem,this paper presents a performance evaluation method that evaluates the effectiveness and invulnerability of the wired LANs.Compared to traditional statistical methods,it has the distinct advantage of being able to handle several dependent variables simultaneously and tolerates the measurement errors among these independent variables and dependent variables.Finally,the rationality and validity of this method are verified by the extensive experimental simulation.展开更多
The previous research on administration of the transmission capacity in the wired/ wireless ATM networks only focuses on wired part or wireless part. There are very few people do the work extending to the links associ...The previous research on administration of the transmission capacity in the wired/ wireless ATM networks only focuses on wired part or wireless part. There are very few people do the work extending to the links associating with handoff in the whole network. This paper develops the algorithms of transmission capacity administration on the link connecting the base station and base station controller (including the air interface of the base station) and the VPs among the base station controllers in the wired/ wireless ATM networks, which adapt to the traffic state of each service in every cellular cell to allocate (provision) transmission capacity and to reserve handoff guard capacity on these links, respectively. By simulating and analyzing the performance of the algorithm, it is found that it does well for the multimedia communication in which the transmission capacity requirement of each service may be widely different, so that the network bandwidth resource can be used efficiently.展开更多
Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scal...Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scale to large underground structures. Stimulation can occur from unwanted electromagnetic signals entering the buried system, and for assessing the operating state of a buried system that is not usually physically accessible. In both cases detecting damage or status can be accomplished by examining the time dependence of the resultant surface temperature. This study shows how to determine surface temperature for a hypothetical thermal-plus-systems using a combination of Fourier-space and Laplace-time transform techniques. The hypothetical model can be generalized from scaling the relevant relationships.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
Wired drill pipe(WDP)technology is one of the most promising data acquisition technologies in today s oil and gas industry.For the first time it allows sensors to be positioned along the drill string which enables c...Wired drill pipe(WDP)technology is one of the most promising data acquisition technologies in today s oil and gas industry.For the first time it allows sensors to be positioned along the drill string which enables collecting and transmitting valuable data not only from the bottom hole assembly(BHA),but also along the entire length of the wellbore to the drill floor.The technology has received industry acceptance as a viable alternative to the typical logging while drilling(LWD)method.Recently more and more WDP applications can be found in the challenging drilling environments around the world,leading to many innovations to the industry.Nevertheless most of the data acquired from WDP can be noisy and in some circumstances of very poor quality.Diverse factors contribute to the poor data quality.Most common sources include mis-calibrated sensors,sensor drifting,errors during data transmission,or some abnormal conditions in the well,etc.The challenge of improving the data quality has attracted more and more focus from many researchers during the past decade.This paper has proposed a promising solution to address such challenge by making corrections of the raw WDP data and estimating unmeasurable parameters to reveal downhole behaviors.An advanced data processing method,data validation and reconciliation(DVR)has been employed,which makes use of the redundant data from multiple WDP sensors to filter/remove the noise from the measurements and ensures the coherence of all sensors and models.Moreover it has the ability to distinguish the accurate measurements from the inaccurate ones.In addition,the data with improved quality can be used for estimating some crucial parameters in the drilling process which are unmeasurable in the first place,hence provide better model calibrations for integrated well planning and realtime operations.展开更多
Recent fossil fuel shortages and global warming related problems have caused a substantial shift from internal combustion engine vehicles towards EVs.This paper explores the thorough review of battery charging infrast...Recent fossil fuel shortages and global warming related problems have caused a substantial shift from internal combustion engine vehicles towards EVs.This paper explores the thorough review of battery charging infrastructure from wired connection to on-road wireless charging for an EV.The initial part of the paper deals with the wired charging and its power electronics infrastructure.The later portion deals with the wireless charging where both static and On-Road types are discussed.Furthermore,various aspects of wireless power transfer are also discussed.The Market scenario and future growth prospects are reviewed and presented in last section of the paper.展开更多
After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,M...After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr...A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.展开更多
To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel as...To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel assembly.This study conducted detailed comparisons between traditional and new pattern fuel assembly rod bundles utilizing the open-source computational fluid dynamics platform,OpenFOAM.The results indicated that the new design may significantly reduce the pressure drop along the rod bundle,which is beneficial for lowering the pressure drop.Furthermore,this new design improved coolant mixing in the subchannels,which facilitated a more uniform temperature distribution and lower thermal gradients at the assembly outlet.These factors collectively reduced the thermal fatigue and creep in nearby internal components.Overall,the newpattern fuel assembly proposed in this study may have better heat transfer performance,thereby enhancing the Integrated Thermal-Hydraulic Factor by 48.2% compared to the traditional pattern.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve...Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed...To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.展开更多
The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niob...The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires.展开更多
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim...Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.展开更多
In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmet...In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmetric fracture behavior,especially in the compression region.The aim of this study is to develop a comprehensive damage model for Mg alloy wire that accurately predicts ductile fracture,with a focus on the compression region.A novel experimental method was introduced to measure the ductile fracture of Mg alloy wires under different stress states.The wire drawing process was simulated using the Generalized Incremental Stress-State dependent damage(GISSMO)Model and the Semi-Analytical Model for Polymers(SAMP)model.The damage model's prediction and the experimental results were found to be in excellent agreement,especially in determining crack initiation.Computational analysis established a safe zone diagram for die angle and reduction ratio,and experimental validation confirmed the feasibility of this approach.The proposed damage model can provide a practical and reliable analysis for optimizing the drawing process of Mg alloy wire.展开更多
基金supported by the General Project of the National Social Science Fund of China(Grant No.NSSFC)“Research on the Changes of Modern East Asian Order”(Grant No.18BSS028).
文摘Using the adoption and expansion of wired telegraph in China during the late 19^(th) century,this paper investigates the effect of cost reductions for knowledge exchange on China’s industrial growth before the outbreak of the War of Resistance Against Japanese Aggression(1931-1945),thus testing Baldwin’s theory of“the Great Convergence”in which developing countries are empowered by information and communication technologies.Based on panel data of 1858-1937,we found that wired telegraph access had a significantly positive effect,as well as a long-term growth effect,on the entry of industrial enterprises.Our mechanism analysis indicates that wired telegraph access accelerated early-stage industrialization in localities by encouraging market integration,human capital accumulation,and auxiliary commercial organizations.Only a few countries firmly asserted their telegraph sovereignty and set up their own workforce educational system during telegraph adoption.This explains why the Great Convergence arising from technology importation only occurred in a small number of countries.Our findings contribute to understanding the source of China’s modern industrial progress,as well as why global inequities remain.
文摘It is difficult to find the projectile when people want to get the penetration data in a hard recovery method,so a recovery system of penetration data is designed based on an ejection mode from the projectile base and a method of wired transmission,at the same time,the system was sealed with a designed sealing device,the working principle of which was introduced.Using Fluent as the simulation platform,the transient pressure of seal cavity was simulated based on the change of chamber pressure,and steady-state pressure of seal clearance and seal cavity were simulated based on the maximum chamber pressure.The sealing performance was tested by apressure test system.The results of simulation and experiment show that the maximum pressure of seal cavity is 139.4kPa when the maximum chamber pressure is 242.9MPa and the maximum temperature of gunpowder explosive gas is2 166.5K,so the sealing performance can be assured.The sealing device can be taken as a reference in sealing research on gunpowder gas at the bottom of projection.
基金supported by the National Natural Science Foundations of China (Nos.61572435,61472305, 61473222)the Ningbo Natural Science Foundations(Nos. 2016A610035,2017A610119)+1 种基金the Complex Electronic System Simulation Laboratory (No.DXZT-JC-ZZ-2015015)the Joint Fund of China State Shipbuilding Corporation(No.6141B03010103)
文摘For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network topology and the performance improvement of the networks.However,there are many factors affecting the performance of the networks,and the relation among them is also complicated.How to evaluate the performance of the wired LANs more accurately has been a heavy challenge in the network research.In order to solve the problem,this paper presents a performance evaluation method that evaluates the effectiveness and invulnerability of the wired LANs.Compared to traditional statistical methods,it has the distinct advantage of being able to handle several dependent variables simultaneously and tolerates the measurement errors among these independent variables and dependent variables.Finally,the rationality and validity of this method are verified by the extensive experimental simulation.
文摘The previous research on administration of the transmission capacity in the wired/ wireless ATM networks only focuses on wired part or wireless part. There are very few people do the work extending to the links associating with handoff in the whole network. This paper develops the algorithms of transmission capacity administration on the link connecting the base station and base station controller (including the air interface of the base station) and the VPs among the base station controllers in the wired/ wireless ATM networks, which adapt to the traffic state of each service in every cellular cell to allocate (provision) transmission capacity and to reserve handoff guard capacity on these links, respectively. By simulating and analyzing the performance of the algorithm, it is found that it does well for the multimedia communication in which the transmission capacity requirement of each service may be widely different, so that the network bandwidth resource can be used efficiently.
文摘Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scale to large underground structures. Stimulation can occur from unwanted electromagnetic signals entering the buried system, and for assessing the operating state of a buried system that is not usually physically accessible. In both cases detecting damage or status can be accomplished by examining the time dependence of the resultant surface temperature. This study shows how to determine surface temperature for a hypothetical thermal-plus-systems using a combination of Fourier-space and Laplace-time transform techniques. The hypothetical model can be generalized from scaling the relevant relationships.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金supported by University of Stavanger, NorwaySINTEF,the Center for Integrated Operations in the Petroleum Industry and the management of National Oilwell Varco Intelli Serv
文摘Wired drill pipe(WDP)technology is one of the most promising data acquisition technologies in today s oil and gas industry.For the first time it allows sensors to be positioned along the drill string which enables collecting and transmitting valuable data not only from the bottom hole assembly(BHA),but also along the entire length of the wellbore to the drill floor.The technology has received industry acceptance as a viable alternative to the typical logging while drilling(LWD)method.Recently more and more WDP applications can be found in the challenging drilling environments around the world,leading to many innovations to the industry.Nevertheless most of the data acquired from WDP can be noisy and in some circumstances of very poor quality.Diverse factors contribute to the poor data quality.Most common sources include mis-calibrated sensors,sensor drifting,errors during data transmission,or some abnormal conditions in the well,etc.The challenge of improving the data quality has attracted more and more focus from many researchers during the past decade.This paper has proposed a promising solution to address such challenge by making corrections of the raw WDP data and estimating unmeasurable parameters to reveal downhole behaviors.An advanced data processing method,data validation and reconciliation(DVR)has been employed,which makes use of the redundant data from multiple WDP sensors to filter/remove the noise from the measurements and ensures the coherence of all sensors and models.Moreover it has the ability to distinguish the accurate measurements from the inaccurate ones.In addition,the data with improved quality can be used for estimating some crucial parameters in the drilling process which are unmeasurable in the first place,hence provide better model calibrations for integrated well planning and realtime operations.
文摘Recent fossil fuel shortages and global warming related problems have caused a substantial shift from internal combustion engine vehicles towards EVs.This paper explores the thorough review of battery charging infrastructure from wired connection to on-road wireless charging for an EV.The initial part of the paper deals with the wired charging and its power electronics infrastructure.The later portion deals with the wireless charging where both static and On-Road types are discussed.Furthermore,various aspects of wireless power transfer are also discussed.The Market scenario and future growth prospects are reviewed and presented in last section of the paper.
基金Theme-based research scheme of Hong Kong Research Grant Council(RGC Ref:T13-402/17-N)National Natural Science Foundation of China(No.U1804251)。
文摘After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金the National Natural Science Foundation of China(Nos.U21A2051,52173297,52071133)the R&D Projects of Henan Academy of Sciences of China(No.220910009)+2 种基金the Key R&D and Promotion Projects of Henan Province of China(No.212102210441)the Joint Fund of Henan Science and Technology R&D Plan of China(No.222103810037)the Zhongyuan Scholar Workstation Funded Project of China(No.214400510028).
文摘A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.
基金supported partly by the Ministry of Science and Technology of the People’s Republic of China(No.2020YFB1902100)the China Postdoctoral Science Foundation(No.2023M731458)+3 种基金the Science and Technology Program of Gansu ProvinceChina(No.23JRRA1099)the Postdoctoral Fellowship Program of CPSF(No.GZB20230278)financially supported by the Shanghai Municipal Commission of Economy and Informatization(No.GYQJ-2018-2-02)。
文摘To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel assembly.This study conducted detailed comparisons between traditional and new pattern fuel assembly rod bundles utilizing the open-source computational fluid dynamics platform,OpenFOAM.The results indicated that the new design may significantly reduce the pressure drop along the rod bundle,which is beneficial for lowering the pressure drop.Furthermore,this new design improved coolant mixing in the subchannels,which facilitated a more uniform temperature distribution and lower thermal gradients at the assembly outlet.These factors collectively reduced the thermal fatigue and creep in nearby internal components.Overall,the newpattern fuel assembly proposed in this study may have better heat transfer performance,thereby enhancing the Integrated Thermal-Hydraulic Factor by 48.2% compared to the traditional pattern.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(2022JH-ZDZH-0039)International Science and Technology Cooperation Program of Shaanxi Province (2023-GHZD-50)+9 种基金Project of Qin Chuangyuan ‘Scientist+Engineer’team constructionKey R&D plan of Shaanxi Province (S2023-YF-QCYK-0001-237)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an (2022JH-ZDZH-0039)National Natural Science Foundation of China (52101134)Natural Science Foundation of Guangdong Province (2022A1515010275)Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0479)Doctoral Dissertations Innovation Fund of Xi’an University of Technology (101-252072305)Research Start-up Project of Xi’an University of Technology(101-256082204)Natural Science Foundation of Shaanxi Province (2023-JC-QN-0573)Natural Science Basic Research Program of Shaanxi(2023-JC-YB-412)
文摘Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金Supports from the National Natural Science Foundation of China(Grant No.12272094,No.52205185 and No.51975123)the Natural Science Foundation of Fujian Province of China(Grant No.2022J01541 and No.2020J05102)the Key Project of National Defence Innovation Zone of Science and Technology Commission of CMC(Grant No.XXX-033-01)。
文摘To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation.
基金support from the Australian Research Council(ARC)Linkage Project(LP200200689).
文摘The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires.
基金Intelligent Manufacturing and Robot Technology Innovation Project of Beijing Municipal Commission of Science and Technology and Zhongguancun Science and Technology Park Management Committee,Grant/Award Number:Z221100000222016National Natural Science Foundation of China,Grant/Award Number:62076014Beijing Municipal Education Commission and Beijing Natural Science Foundation,Grant/Award Number:KZ202010005004。
文摘Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2020R1A2C2010986,2022M3H4A1A04085301)。
文摘In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmetric fracture behavior,especially in the compression region.The aim of this study is to develop a comprehensive damage model for Mg alloy wire that accurately predicts ductile fracture,with a focus on the compression region.A novel experimental method was introduced to measure the ductile fracture of Mg alloy wires under different stress states.The wire drawing process was simulated using the Generalized Incremental Stress-State dependent damage(GISSMO)Model and the Semi-Analytical Model for Polymers(SAMP)model.The damage model's prediction and the experimental results were found to be in excellent agreement,especially in determining crack initiation.Computational analysis established a safe zone diagram for die angle and reduction ratio,and experimental validation confirmed the feasibility of this approach.The proposed damage model can provide a practical and reliable analysis for optimizing the drawing process of Mg alloy wire.