Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were...Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were addressed in the open literature. One of WDC key challenges is the impact of wireless channel quality on the load of distributed computations. Therefore, this research investigates the wireless channel impact on WDC performance when the tatter is applied to spectrum sensing in cognitive radio (CR) technology. However, a trade- off is found between accuracy and computational complexity in spectrum sensing approaches. Increasing these approaches accuracy is accompanied by an increase in computational complexity. This results in greater power consumption and processing time. A novel WDC scheme for cyclostationary feature detection spectrum sensing approach is proposed in this paper and thoroughly investigated. The benefits of the proposed scheme are firstly presented. Then, the impact of the wireless channel of the proposed scheme is addressed considering two scenarios. In the first scenario, workload matrices are distributed over the wireless channel展开更多
The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a syste...The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.展开更多
In the target tracking, the nodes aggregate their observations of the directions of arrival of the target. The network then uses an extended Kalman filter (EKF) to combine the measurements from multiple snapshots to...In the target tracking, the nodes aggregate their observations of the directions of arrival of the target. The network then uses an extended Kalman filter (EKF) to combine the measurements from multiple snapshots to track the target. In order to rapidly select the best subset of nodes to localize the target with the minimum mean square position error and low power consumption, this paper proposes a simple algorithm, which uses the location information of the target and the network. The lower botmd of localization error is utilized according to the distances between the target and the selected active nodes. Furthermore, the direction likelihoods of the active nodes is predicted by way of the node/target bearing distributing relationships.展开更多
The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where...The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.展开更多
The standardized IEEE ,802. II distributed coordination function ( DCF) provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium. However, when stations are m...The standardized IEEE ,802. II distributed coordination function ( DCF) provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium. However, when stations are mobile or portable units, power consumption becomes a primary issue since terminals are usually battery driven. This paper proposes an analytical model that calculates the energy efficiency of both the basic and the RTS/CTS access mechanisms of the IEEE 802. II protocol. The model is validated with simulation results using NS-2 simulation package. The effects of the network size, the average packet length, the initial contention window and maximum backoff stages on the energy efficiency of both access mechanisms are also investigated. Results show that the basic scheme has low energy efficiency at large packet length and large network size, and depends strongly on the number of stations and the backoff procedure parameters. Conversely, the RTS/CTS mechanism provides higher energy efficiency when the network size is large, and is more robust to variations in the backoff procedure parameters.展开更多
In this paper, we address fault-diagnosis agreement(FDA) problems in distributed wireless networks(DWNs) with arbitrary fallible nodes and healthy access points. We propose a new algorithm to reach an agreement among ...In this paper, we address fault-diagnosis agreement(FDA) problems in distributed wireless networks(DWNs) with arbitrary fallible nodes and healthy access points. We propose a new algorithm to reach an agreement among fault-free members about the faulty ones. The algorithm is designed for fully connected DWN and can also be easily adapted to partially connected networks. Our contribution is to reduce the bit complexity of the Byzantine agreement process by detecting the same list of faulty units in all fault-free members. Therefore, the malicious units can be removed from other consensus processes. Also, each healthy unit detects a local list of malicious units, which results in lower packet transmissions in the network. Our proposed algorithm solves FDA problems in 2t+1 rounds of packet transmissions, and the bit complexity in each wireless node is O(nt+1).展开更多
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
文摘Recently, wireless distributed computing (WDC) concept has emerged promising manifolds improvements to current wireless technotogies. Despite the various expected benefits of this concept, significant drawbacks were addressed in the open literature. One of WDC key challenges is the impact of wireless channel quality on the load of distributed computations. Therefore, this research investigates the wireless channel impact on WDC performance when the tatter is applied to spectrum sensing in cognitive radio (CR) technology. However, a trade- off is found between accuracy and computational complexity in spectrum sensing approaches. Increasing these approaches accuracy is accompanied by an increase in computational complexity. This results in greater power consumption and processing time. A novel WDC scheme for cyclostationary feature detection spectrum sensing approach is proposed in this paper and thoroughly investigated. The benefits of the proposed scheme are firstly presented. Then, the impact of the wireless channel of the proposed scheme is addressed considering two scenarios. In the first scenario, workload matrices are distributed over the wireless channel
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010)
文摘The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.
基金National Natural Science Foundation of China(60532030)National Basic Research Program of China(973-61361)National Science Fund for Distinguished Young Scholars(60625102)
文摘In the target tracking, the nodes aggregate their observations of the directions of arrival of the target. The network then uses an extended Kalman filter (EKF) to combine the measurements from multiple snapshots to track the target. In order to rapidly select the best subset of nodes to localize the target with the minimum mean square position error and low power consumption, this paper proposes a simple algorithm, which uses the location information of the target and the network. The lower botmd of localization error is utilized according to the distances between the target and the selected active nodes. Furthermore, the direction likelihoods of the active nodes is predicted by way of the node/target bearing distributing relationships.
基金supported in part by National 973 Program(2012CB315705)NSFC Program(61302086,61271042,61107058, 61302016,and 61335002)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20130005120007)Program for New Century Excellent Talents in University(NCET-13-0682)Fundamental Research Funds for the Central Universities
文摘The performance of three wireless local-area network(WLAN) media access control(MAC) protocols is investigated and compared in the context of simulcast radioover-fiber-based distributed antenna systems(RoF-DASs) where multiple remote antenna units(RAUs) are connected to one access point(AP) with different-length fiber links.The three WLAN MAC protocols under investigation are distributed coordination function(DCF) in basic access mode,DCF in request/clear to send(RTS/CTS) exchange mode,and point coordination function(PCF).In the analysis,the inter-RAU hidden nodes problems and fiber-length difference effect are both taken into account.Results show that adaptive PCF mechanism has better throughput performances than the other two DCF modes,especially when the inserted fiber length is short.
文摘The standardized IEEE ,802. II distributed coordination function ( DCF) provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium. However, when stations are mobile or portable units, power consumption becomes a primary issue since terminals are usually battery driven. This paper proposes an analytical model that calculates the energy efficiency of both the basic and the RTS/CTS access mechanisms of the IEEE 802. II protocol. The model is validated with simulation results using NS-2 simulation package. The effects of the network size, the average packet length, the initial contention window and maximum backoff stages on the energy efficiency of both access mechanisms are also investigated. Results show that the basic scheme has low energy efficiency at large packet length and large network size, and depends strongly on the number of stations and the backoff procedure parameters. Conversely, the RTS/CTS mechanism provides higher energy efficiency when the network size is large, and is more robust to variations in the backoff procedure parameters.
文摘In this paper, we address fault-diagnosis agreement(FDA) problems in distributed wireless networks(DWNs) with arbitrary fallible nodes and healthy access points. We propose a new algorithm to reach an agreement among fault-free members about the faulty ones. The algorithm is designed for fully connected DWN and can also be easily adapted to partially connected networks. Our contribution is to reduce the bit complexity of the Byzantine agreement process by detecting the same list of faulty units in all fault-free members. Therefore, the malicious units can be removed from other consensus processes. Also, each healthy unit detects a local list of malicious units, which results in lower packet transmissions in the network. Our proposed algorithm solves FDA problems in 2t+1 rounds of packet transmissions, and the bit complexity in each wireless node is O(nt+1).