With the rapid development of wireless communications systems, different system standards are being merged. Operators take stringent measures to reduce Operational Expenditure (OPEX) and Capital Expenditure (CAPEX...With the rapid development of wireless communications systems, different system standards are being merged. Operators take stringent measures to reduce Operational Expenditure (OPEX) and Capital Expenditure (CAPEX); and as a result, soft base stations supporting multiple standards become the evolutionary tend of wireless base stations. This paper introduces the background of soft base stations and analyzes their architecture design, system modules. The key technologies in system implementation and future directions are also presented.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been a...Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been assessed.展开更多
为了提高无人机基站(unmanned aerial vehicle base stations,UAV-BS)为地面多用户服务时的数据速率,提出一种基于决斗深度神经网络(dueling deep Q-network,Dueling-DQN)的深度强化学习(deep reinforcement learning,DRL)算法。采用决...为了提高无人机基站(unmanned aerial vehicle base stations,UAV-BS)为地面多用户服务时的数据速率,提出一种基于决斗深度神经网络(dueling deep Q-network,Dueling-DQN)的深度强化学习(deep reinforcement learning,DRL)算法。采用决斗网络(dueling network,DN)结构以克服动态环境的部分可观测问题,联合优化了UAV-BS的位置和下行链路功率分配,在更符合实际的空地概率信道模型中检验了Dueling-DQN算法的性能。结果表明,相较于对比算法,所提出的Dueling-DQN算法可以提供更高的数据速率和服务公平性,且随着地面用户数量的增大,算法的优势更加明显。Dueling-DQN算法可有效解决复杂非凸性问题,为UAV-BS的资源分配问题提供理论参考。展开更多
文摘With the rapid development of wireless communications systems, different system standards are being merged. Operators take stringent measures to reduce Operational Expenditure (OPEX) and Capital Expenditure (CAPEX); and as a result, soft base stations supporting multiple standards become the evolutionary tend of wireless base stations. This paper introduces the background of soft base stations and analyzes their architecture design, system modules. The key technologies in system implementation and future directions are also presented.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
文摘Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been assessed.
文摘为了提高无人机基站(unmanned aerial vehicle base stations,UAV-BS)为地面多用户服务时的数据速率,提出一种基于决斗深度神经网络(dueling deep Q-network,Dueling-DQN)的深度强化学习(deep reinforcement learning,DRL)算法。采用决斗网络(dueling network,DN)结构以克服动态环境的部分可观测问题,联合优化了UAV-BS的位置和下行链路功率分配,在更符合实际的空地概率信道模型中检验了Dueling-DQN算法的性能。结果表明,相较于对比算法,所提出的Dueling-DQN算法可以提供更高的数据速率和服务公平性,且随着地面用户数量的增大,算法的优势更加明显。Dueling-DQN算法可有效解决复杂非凸性问题,为UAV-BS的资源分配问题提供理论参考。