期刊文献+
共找到1,022篇文章
< 1 2 52 >
每页显示 20 50 100
A blockchain-empowered authentication scheme for worm detection in wireless sensor network
1
作者 Yuling Chen Xiong Yang +2 位作者 Tao Li Yi Ren Yangyang Long 《Digital Communications and Networks》 SCIE CSCD 2024年第2期265-272,共8页
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For... Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network. 展开更多
关键词 wireless Sensor network(WSN) Node authentication Blockchain TANGLE Worm detection
下载PDF
A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks 被引量:1
2
作者 G.Nagalalli GRavi 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期475-490,共16页
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d... Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs. 展开更多
关键词 wireless sensor network intrusion detection systems long short term memory megabat optimization
下载PDF
Billiards Optimization with Modified Deep Learning for Fault Detection in Wireless Sensor Network
3
作者 Yousif Sufyan Jghef Mohammed Jasim Mohammed Jasim +1 位作者 Subhi R.M.Zeebaree Rizgar R.Zebari 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1651-1664,共14页
Wireless Sensor Networks(WSNs)gather data in physical environments,which is some type.These ubiquitous sensors face several challenges responsible for corrupting them(mostly sensor failure and intrusions in external a... Wireless Sensor Networks(WSNs)gather data in physical environments,which is some type.These ubiquitous sensors face several challenges responsible for corrupting them(mostly sensor failure and intrusions in external agents).WSNs were disposed to error,and effectual fault detection techniques are utilized for detecting faults from WSNs in a timely approach.Machine learning(ML)was extremely utilized for detecting faults in WSNs.Therefore,this study proposes a billiards optimization algorithm with modified deep learning for fault detection(BIOMDL-FD)in WSN.The BIOMDLFD technique mainly concentrates on identifying sensor faults to enhance network efficiency.To do so,the presented BIOMDL-FD technique uses the attention-based bidirectional long short-term memory(ABLSTM)method for fault detection.In the ABLSTM model,the attention mechanism enables us to learn the relationships between the inputs and modify the probability to give more attention to essential features.At the same time,the BIO algorithm is employed for optimal hyperparameter tuning of the ABLSTM model,which is stimulated by billiard games,showing the novelty of the work.Experimental analyses are made to affirm the enhanced fault detection outcomes of the BIOMDL-FD technique.Detailed simulation results demonstrate the improvement of the BIOMDL-FD technique over other models with a maximum classification accuracy of 99.37%. 展开更多
关键词 wireless sensor network fault detection RELIABILITY deep learning metaheuristics
下载PDF
A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection
4
作者 Chandraumakantham Om Kumar Sudhakaran Gajendran +2 位作者 Suguna Marappan Mohammed Zakariah Abdulaziz S.Almazyad 《Computers, Materials & Continua》 SCIE EI 2024年第10期471-501,共31页
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure... The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11. 展开更多
关键词 Deep learning intrusion detection fuzzy rules feature selection false alarm rate ACCURACY wireless sensor networks
下载PDF
Coordinate-free k-coverage hole detection algorithm in wireless sensor networks 被引量:11
5
作者 Ma Wenyu Yan Feng +2 位作者 Zuo Xuzhou Xia Weiwei Shen Lianfeng 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期8-15,共8页
For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists ... For wireless sensor networks, a simple and accurate coordinate-free k-coverage hole detection scheme is proposed. First, an algorithm is presented to detect boundary cycles of 1-coverage holes. The algorithm consists of two components, named boundary edge detection and boundary cycle detection. Then, the 1-coverage hole detection algorithm is extended to k-coverage hole scenarios. A coverage degree reduction scheme is proposed to find an independent covering set of nodes in the covered region of the target field and to reduce the coverage degree by one through sleeping those nodes. Repeat the 1-coverage hole detection algorithm and the higher order of coverage holes can be found. By iterating the above steps for k-1 times, the boundary edges and boundary cycles of all k-coverage holes can be discovered. Finally, the proposed algorithm is compared with a location-based coverage hole detection algorithm. Simulation results indicate that the proposed algorithm can accurately detect over 99% coverage holes. 展开更多
关键词 k-coverage hole detection K-COVERAGE wireless sensor networks
下载PDF
Anomaly Detection Based on Data-Mining for Routing Attacks in Wireless Sensor Networks 被引量:2
6
作者 Song Jianhua Ma Chuanxiang 《China Communications》 SCIE CSCD 2008年第2期34-39,共6页
With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wirele... With the increasing deployment of wireless sensordevices and networks,security becomes a criticalchallenge for sensor networks.In this paper,a schemeusing data mining is proposed for routing anomalydetection in wireless sensor networks.The schemeuses the Apriori algorithm to extract traffic patternsfrom both routing table and network traffic packetsand subsequently the K-means cluster algorithmadaptively generates a detection model.Through thecombination of these two algorithms,routing attackscan be detected effectively and automatically.Themain advantage of the proposed approach is that it isable to detect new attacks that have not previouslybeen seen.Moreover,the proposed detection schemeis based on no priori knowledge and then can beapplied to a wide range of different sensor networksfor a variety of routing attacks. 展开更多
关键词 ANOMALY detection ROUTING ATTACKS DATA-MINING wireless sensor networks
下载PDF
Intrusion Detection for Wireless Mesh Networks using Finite State Machine 被引量:5
7
作者 Yi Ping Wu Yue +1 位作者 Liu Ning Wang Zhiyang 《China Communications》 SCIE CSCD 2010年第5期40-48,共9页
Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protec... Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments. 展开更多
关键词 wireless mesh networks SECURITY intrusion detection finite state machine
下载PDF
TDOA-based Sybil attack detection scheme for wireless sensor networks 被引量:5
8
作者 温蜜 李辉 +1 位作者 郑燕飞 陈克非 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期66-70,共5页
As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node w... As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing. 展开更多
关键词 attack detection Sybil attack.time difference of arrival (TDOA) wireless sensor networks (WSN)
下载PDF
Complex field network-coded cooperation based on multi-user detection in wireless networks 被引量:2
9
作者 Jing Wang Xiangyang Liu +1 位作者 Kaikai Chi Xiangmo Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期215-221,共7页
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC... Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values. 展开更多
关键词 network coding complex field wireless network cooperative communication multi-user detection
下载PDF
Deep Learning and Entity Embedding-Based Intrusion Detection Model for Wireless Sensor Networks 被引量:3
10
作者 Bandar Almaslukh 《Computers, Materials & Continua》 SCIE EI 2021年第10期1343-1360,共18页
Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such ... Wireless sensor networks(WSNs)are considered promising for applications such as military surveillance and healthcare.The security of these networks must be ensured in order to have reliable applications.Securing such networks requires more attention,as they typically implement no dedicated security appliance.In addition,the sensors have limited computing resources and power and storage,which makes WSNs vulnerable to various attacks,especially denial of service(DoS).The main types of DoS attacks against WSNs are blackhole,grayhole,flooding,and scheduling.There are two primary techniques to build an intrusion detection system(IDS):signature-based and data-driven-based.This study uses the data-driven approach since the signature-based method fails to detect a zero-day attack.Several publications have proposed data-driven approaches to protect WSNs against such attacks.These approaches are based on either the traditional machine learning(ML)method or a deep learning model.The fundamental limitations of these methods include the use of raw features to build an intrusion detection model,which can result in low detection accuracy.This study implements entity embedding to transform the raw features to a more robust representation that can enable more precise detection and demonstrates how the proposed method can outperform state-of-the-art solutions in terms of recognition accuracy. 展开更多
关键词 wireless sensor networks intrusion detection deep learning entity embedding artificial neural networks
下载PDF
A Method for Node Fault Detection in Wireless Sensor Networks 被引量:3
11
作者 高志鹏 黄日茂 +1 位作者 陈颖慧 芮兰兰 《China Communications》 SCIE CSCD 2011年第1期28-34,共7页
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf... To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes. 展开更多
关键词 wireless sensor network fault detection neighbor nodes
下载PDF
Research on Low Energy Consumption Distributed Fault Detection Mechanism in Wireless Sensor Network 被引量:1
12
作者 Shuang Jia Lin Ma Danyang Qin 《China Communications》 SCIE CSCD 2019年第3期179-189,共11页
Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and atta... Wireless sensor network is an important technical support for ubiquitous communication. For the serious impacts of network failure caused by the unbalanced energy consumption of sensor nodes, hardware failure and attacker intrusion on data transmission, a low energy consumption distributed fault detection mechanism in wireless sensor network(LEFD) is proposed in this paper. Firstly, the time correlation information of nodes is used to detect fault nodes in LEFD, and then the spatial correlation information is adopted to detect the remaining fault nodes, so as to check the states of nodes comprehensively and improve the efficiency of data transmission. In addition, the nodes do not need to exchange information with their neighbor nodes in the initial detection process since LEFD adopts the data sensed by node itself to detect some types of faults, thus reducing the energy consumption of nodes effectively. Finally, LEFD also considers the nodes that may have transient faults. Performance analysis and simulation results show that the proposed detection mechanism can improve the transmission performance and reduce the energy consumption of network effectively. 展开更多
关键词 wireless sensor network low energy CONSUMPTION FAULT detection detection ACCURACY
下载PDF
Advanced Border Intrusion Detection and Surveillance Using Wireless Sensor Network Technology 被引量:3
13
作者 Emad Felemban 《International Journal of Communications, Network and System Sciences》 2013年第5期251-259,共9页
Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, sma... Wireless Sensor Network (WSN) has been emerging in the last decade as a powerful tool for connecting physical and digital world. WSN has been used in many applications such habitat monitoring, building monitoring, smart grid and pipeline monitoring. In addition, few researchers have been experimenting with WSN in many mission-critical applications such as military applications. This paper surveys the literature for experimenting work done in border surveillance and intrusion detection using the technology of WSN. The potential benefits of using WSN in border surveillance are huge;however, up to our knowledge very few attempts of solving many critical issues about this application could be found in the literature. 展开更多
关键词 wireless Sensor network INTRUSION detection BORDER SURVEILLANCE PERIMETER SURVEILLANCE REMOTE Monitoring
下载PDF
A Malicious and Malfunctioning Node Detection Scheme for Wireless Sensor Networks 被引量:3
14
作者 Seo Hyun Oh Chan O. Hong Yoon Hwa Choi 《Wireless Sensor Network》 2012年第3期84-90,共7页
Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulne... Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate. 展开更多
关键词 wireless SENSOR networks FAULT detection MALICIOUS NODE detection
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
15
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 Artificial Neural network (ANN) Back Propagation FALL detection FALL Prevention GAIT Analysis SENSOR Support Vector Machine (SVM) wireless SENSOR
下载PDF
A TRUST MECHANISM-BASED CHANNEL ASSIGNMENT AND ROUTING SCHEME IN COGNITIVE WIRELESS MESH NETWORKS WITH INTRUSION DETECTION 被引量:1
16
作者 Wu Guofeng Zhang Jing He Zhaopan 《Journal of Electronics(China)》 2010年第5期728-734,共7页
Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networ... Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively. 展开更多
关键词 Cognitive wireless Mesh networks (CWMN) Intrusion detection Trust mechanism Channel assignment ROUTING
下载PDF
Design and analysis of intrusion detection systems for wireless mesh networks 被引量:1
17
作者 Fawaz S.Al-Anzi 《Digital Communications and Networks》 SCIE CSCD 2022年第6期1068-1076,共9页
Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and all... Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and allow omnipresent access to users on the Internet. A multitude of emerging public services rely on the widespread, high-speed, and inexpensive connectivity provided by such networks. The absence of a centralized network infrastructure and open shared medium makes WMNs particularly susceptible to malevolent attacks, especially in multihop networks. Hence, it is becoming increasingly important to ensure privacy, security, and resilience when designing such networks. An effective method to detect possible internal and external attack vectors is to use an intrusion detection system. Although many Intrusion Detection Systems (IDSs) were proposed for Wireless Mesh Networks (WMNs), they can only detect intrusions in a particular layer. Because WMNs are vulnerable to multilayer security attacks, a cross-layer IDS are required to detect and respond to such attacks. In this study, we analyzed cross-layer IDS options in WMN environments. The main objective was to understand how such schemes detect security attacks at several OSI layers. The suggested IDS is verified in many scenarios, and the experimental results show its efficiency. 展开更多
关键词 wireless Mesh network Intrusi on detection CROSS-LAYER SECURITY
下载PDF
Range-Based Localization in Wireless Networks Using Density-Based Outlier Detection 被引量:2
18
作者 Khalid K. Almuzaini Aaron Gulliver 《Wireless Sensor Network》 2010年第11期807-814,共8页
Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorit... Node localization is commonly employed in wireless networks. For example, it is used to improve routing and enhance security. Localization algorithms can be classified as range-free or range-based. Range-based algorithms use location metrics such as ToA, TDoA, RSS, and AoA to estimate the distance between two nodes. Proximity sensing between nodes is typically the basis for range-free algorithms. A tradeoff exists since range-based algorithms are more accurate but also more complex. However, in applications such as target tracking, localization accuracy is very important. In this paper, we propose a new range-based algorithm which is based on the density-based outlier detection algorithm (DBOD) from data mining. It requires selection of the K-nearest neighbours (KNN). DBOD assigns density values to each point used in the location estimation. The mean of these densities is calculated and those points having a density larger than the mean are kept as candidate points. Different performance measures are used to compare our approach with the linear least squares (LLS) and weighted linear least squares based on singular value decomposition (WLS-SVD) algorithms. It is shown that the proposed algorithm performs better than these algorithms even when the anchor geometry about an unlocalized node is poor. 展开更多
关键词 LOCALIZATION POSITIONING Ad HOC networks Range-Based wireless Sensor network OUTLIER detection Clustering
下载PDF
Neighbor-Based Malicious Node Detection in Wireless Sensor Networks 被引量:2
19
作者 Sung-Jib Yim Yoon-Hwa Choi 《Wireless Sensor Network》 2012年第9期219-225,共7页
The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important... The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate. 展开更多
关键词 wireless Sensor networks MALICIOUS NODES Faults Neighbor-Based detection
下载PDF
A High-level Architecture for Intrusion Detection on Heterogeneous Wireless Sensor Networks: Hierarchical, Scalable and Dynamic Reconfigurable 被引量:2
20
作者 Hossein Jadidoleslamy 《Wireless Sensor Network》 2011年第7期241-261,共21页
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe... Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires. 展开更多
关键词 wireless Sensor network (WSN) Security INTRUSION detection System (IDS) HIERARCHICAL Distributed SCALABLE DYNAMIC RECONFIGURABLE Attack detection.
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部