One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques ...One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.展开更多
In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy...In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.展开更多
The solution we propose optimizes the energy inside the wireless sensor network (WSN) with higher performance. The WSN is composed of many sensors nodes which collect the information, treat that information then send ...The solution we propose optimizes the energy inside the wireless sensor network (WSN) with higher performance. The WSN is composed of many sensors nodes which collect the information, treat that information then send it to the base station. The information is received by the base station (BS) then data?are?sent to the users by that BS. The most important element in sensor node is energy, as the lifetime of wireless sensor network depends on the sensor node energy. So many researches had been made in order to improve this energy basing routing protocols. As a result, we are able to propose a solution that optimizes this energy. In this paper, we are presenting a new approach of selecting node sensor base on routing protocol and process to send data to the base station. This ameliorates wireless sensor network lifetime and increases?the transmission sensor node to base station.展开更多
Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been a...Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been assessed.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
In a wireless sensor network (WSN), sink node/base station (BS) gathers data from surrounding nodes and sends them to a remote server via a gateway. BS holds important data. Therefore, it is necessary to hide its loca...In a wireless sensor network (WSN), sink node/base station (BS) gathers data from surrounding nodes and sends them to a remote server via a gateway. BS holds important data. Therefore, it is necessary to hide its location from an inside/outside attacker. Providing BS location anonymity against a local and global adversary, we propose a novel technique called MimiBS 'Mimicking Base-Station'. The key idea is the integration of aggregator nodes (ANs) with sensor nodes (SNs), while fine tuning TTL (time to live) value for fake packets, and setting some threshold value for real packet counter rpctr. MimiBS creates multiple traffic-hotspots (zones), which shifts the focus from BS to the newly created ANs hotspots. Multiple traffic-hotspots confuse the adversary while determining the real BS location information. We defend the BS location information anonymity against traffic analysis attack, and traffic tracing attack. MimiBS gives an illusion of having multiple BSs, and thus, if the attacker knows any about AN, he/she will be deceived between the real BS and ANs. MimiBS outperforms BLAST (base-station location anonymity and security technique), RW (random walk), and SP (shortest path), while conducting routing without fake packets, with fake packets, without energy consideration, and with energy consideration respectively.展开更多
文摘One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.
文摘In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.
文摘The solution we propose optimizes the energy inside the wireless sensor network (WSN) with higher performance. The WSN is composed of many sensors nodes which collect the information, treat that information then send it to the base station. The information is received by the base station (BS) then data?are?sent to the users by that BS. The most important element in sensor node is energy, as the lifetime of wireless sensor network depends on the sensor node energy. So many researches had been made in order to improve this energy basing routing protocols. As a result, we are able to propose a solution that optimizes this energy. In this paper, we are presenting a new approach of selecting node sensor base on routing protocol and process to send data to the base station. This ameliorates wireless sensor network lifetime and increases?the transmission sensor node to base station.
文摘Antenna and base-station diversity have been applied to a wireless sensor network for the monitoring of live-stock. A field trial has been described and the advantage to be gained in a practical environment has been assessed.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
文摘In a wireless sensor network (WSN), sink node/base station (BS) gathers data from surrounding nodes and sends them to a remote server via a gateway. BS holds important data. Therefore, it is necessary to hide its location from an inside/outside attacker. Providing BS location anonymity against a local and global adversary, we propose a novel technique called MimiBS 'Mimicking Base-Station'. The key idea is the integration of aggregator nodes (ANs) with sensor nodes (SNs), while fine tuning TTL (time to live) value for fake packets, and setting some threshold value for real packet counter rpctr. MimiBS creates multiple traffic-hotspots (zones), which shifts the focus from BS to the newly created ANs hotspots. Multiple traffic-hotspots confuse the adversary while determining the real BS location information. We defend the BS location information anonymity against traffic analysis attack, and traffic tracing attack. MimiBS gives an illusion of having multiple BSs, and thus, if the attacker knows any about AN, he/she will be deceived between the real BS and ANs. MimiBS outperforms BLAST (base-station location anonymity and security technique), RW (random walk), and SP (shortest path), while conducting routing without fake packets, with fake packets, without energy consideration, and with energy consideration respectively.