Liver cancer,and in particular hepatocellular carcinoma(HCC)is a disease of rising prevalence and incidence.To date,definitive treatment options include either surgical excision or ablation of the affected area.With i...Liver cancer,and in particular hepatocellular carcinoma(HCC)is a disease of rising prevalence and incidence.To date,definitive treatment options include either surgical excision or ablation of the affected area.With increasing research on several pathways that could be involved in the progression of HCC,new elements within these pathways emerge as potential targets for novel therapies.The WNT/β-catenin pathway favors the presence of M2 tumor-associated macrophages which in turn promote tumor growth and metastasis.The inhibition of this pathway is considered a good candidate for such targeted therapeutic interventions.Interestingly,as Huang et al show in their recently published article,Calculus bovis which is used in traditional Chinese medicine can exert an inhibitory effect on theβ-catenin pathway and become a potential candidate for targeted pharmacotherapy against liver cancer.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的s...目的探讨甲基转移酶5(methyltransferase-like 5,METTL5)在三阴乳腺癌(triple-negative breast cancer,TNBC)中的作用和潜在机制。方法采用免疫组织化学方法和Western blot检测TNBC肿瘤组织和细胞系中METTL5的表达情况。用靶向METTL5的shRNA(shRNA-METTL5)转染TNBC细胞后,用CCK-8、集落形成、伤口愈合以及Transwell实验分别检测细胞增殖活性、迁移与侵袭,Western blot检测Wnt/β-catenin信号关键蛋白的表达。构建异种移植瘤模型,验证敲降METTL5对TNBC细胞在体内生长以及Wnt/β-catenin信号活性的影响。结果METTL5在TNBC肿瘤组织和细胞系中表达上调(P<0.01)。敲降METTL5可抑制TNBC细胞的增殖、迁移和侵袭并降低了Wnt/β-catenin信号分子β-catenin、细胞周期蛋白(Cyclin)D1、基质金属蛋白酶(MMP)-2和MMP-7的表达(均P<0.01)。体内实验显示,敲降METTL5减缓了移植瘤生长和Wnt/β-catenin信号活性。结论敲降METTL5能抑制TNBC细胞的增殖、迁移与侵袭,其作用可能与抑制Wnt/β-catenin信号通路有关。展开更多
文摘Liver cancer,and in particular hepatocellular carcinoma(HCC)is a disease of rising prevalence and incidence.To date,definitive treatment options include either surgical excision or ablation of the affected area.With increasing research on several pathways that could be involved in the progression of HCC,new elements within these pathways emerge as potential targets for novel therapies.The WNT/β-catenin pathway favors the presence of M2 tumor-associated macrophages which in turn promote tumor growth and metastasis.The inhibition of this pathway is considered a good candidate for such targeted therapeutic interventions.Interestingly,as Huang et al show in their recently published article,Calculus bovis which is used in traditional Chinese medicine can exert an inhibitory effect on theβ-catenin pathway and become a potential candidate for targeted pharmacotherapy against liver cancer.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.