Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre...Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.展开更多
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor...Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.展开更多
BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and th...BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.展开更多
[Objectives] To explore the therapeutic effect and mechanism of Qigongwan on PCOS model rats by detecting the changes in sex hormone levels in rats with polycystic ovary syndrome (PCOS), and observing the effects of o...[Objectives] To explore the therapeutic effect and mechanism of Qigongwan on PCOS model rats by detecting the changes in sex hormone levels in rats with polycystic ovary syndrome (PCOS), and observing the effects of ovarian pathological morphological changes, apoptosis and expression of Wnt/β-β catenin signaling pathway protein. [Methods] Ten of 40 female SD rats were randomly selected as the normal group, and the other 30 rats were treated with letrozole combined with high-fat diet to establish the PCOS rat model. After successful modeling, the model group was randomly divided into Qigongwan group, positive Daying-35 (Ethinylestradiol and Cyproterone Acetate Tablets) group and model group, with 10 rats in each group. Qigongwan group was given 14.7 g/(kg·d) by gavage, Daying-35 group was given 0.21 mg/(kg·d) by oral gavage, and normal group and model group were given the same amount of distilled water, and the intervention lasted for 21 d. ELISA method was used to detect the levels of hormones such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E 2) and progesterone (P) in serum. HE staining was used to observe the pathological morphological changes of ovarian tissues;TUNEL staining was used to observe apoptosis of ovarian tissue granule cells;the expression of Wnt, β-catenin protein in rat ovarian tissue was detected by immunohistochemistry. [Results] (i) Compared with the model group, Qigongwan group and Daying-35 group could significantly increase serum E 2 and P levels, significantly reduce serum T levels ( P <0.01), significantly reduce serum LH levels and LH/FSH ratio ( P <0.01), and increase serum FSH levels ( P <0.05) in different degrees. (ii)The results of HE staining showed that compared with the model group, Qigongwan and Daying-35 groups could improve follicular development and reduce atretic follicles in different degrees. Compared with Daying-35 group, the number of GC layers in Qigongwan group was significantly increased. (iii) The results of TUNEL staining showed that compared with the model group, the rate of TUNEL-positive cells in the Qigongwan group and Daying-35 group decreased significantly ( P <0.01). (iv) The immunohistochemical results showed that compared with the model group, the expression levels of wnt and β-catenin in the Qigongwan group and the Daying-35 group increased in different degrees ( P <0.05), and the expression range increased. [Conclusions] Qigongwan can regulate the secretion level of sex hormones such as FSH and LH, improve the pathological damage of ovarian tissue, and inhibit apoptosis of ovarian granule cells, and its mechanism may be related to the activation of Wnt/β-catenin signaling pathway.展开更多
Diabetic nephropathy(DN)is the most serious microvascular complication of diabetes mellitus,which is highly prevalent worldwide.Abnormal activation of Wnt/β-catenin signaling pathway is an important mechanism of rena...Diabetic nephropathy(DN)is the most serious microvascular complication of diabetes mellitus,which is highly prevalent worldwide.Abnormal activation of Wnt/β-catenin signaling pathway is an important mechanism of renal damage induced by hyperglycemia.Many studies have shown that TCM has the advantages of high efficiency and safety in the prevention and treatment of DN.Some TCM monomers and compounds repair podocyte function and inhibit transdifferentiation process by inhibiting the activation of Wnt/β-catenin signaling pathway,thus playing a protective role in kidney.Based on this,this paper will review the existing research results and related mechanisms of TCM intervention in Wnt/β-catenin signaling pathway in the treatment of DN,in order to promote the more effective and reasonable application of TCM in clinical practice.展开更多
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining ro...The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRPS), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.展开更多
AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo. METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse tran...AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo. METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse transcription polymerase chain reaction (RTPCR) from embryonic pancreas in different periods and normal pancreas of rat, respectively. Protein expression of these genes in embryonic pancreas of E14.5-E18.5 was examined by immunohistochemical method. RESULTS: In embryonic pancreas of E14.5, the transcript amplification of β-catenin and cyclinD1 genes was detected. In embryonic pancreas of E18.5, the transcription levels of β-catenin and cyclinD1 genes became much higher than in other periods. But in adult rat pancreas the transcription of cyclinD1 gene could not be observed. Only until E18.5, the transcript amplification of mRNA of APC gene could be detected. Surprisingly, the transcription level of APC gene became much higher in adult rat pancreas than in embryonic pancreas. By means of immunohistochemical staining, identical results were obtained to the above by RP-PCR, except for β-catenin protein in adult rat pancreas. CONCLUSION: Active Wnt/β-catenin signaling occurs in rat embryonic pancreas and is probably important for pancreatic development and organ formation.展开更多
The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the...The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.展开更多
Objective:To study the mechanism of effect of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice.Methods:The effect of miR-21 on A549 cells were detected by M...Objective:To study the mechanism of effect of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice.Methods:The effect of miR-21 on A549 cells were detected by MTT method.MiR-21 expression levels were overexpressed or inhibited in A549 cells by transfecting with miR-21 mimics or inhibitors.Correlation among key molecules(Wnt1,β-catenin.CyclinD1 and miR-21) of mRNA and protein levels in Wnt/β-catenin signaling pathway were studied by Real-time PCR and Western blot hybridization assay.Invasive ability of A549 cells was determined via Transwell chamber cell invasion assay;the role of miR-21 in A549 cells was explored via the Wnt/β-catenin signaling pathway.A Lewis lung carcinoma animal model was established to detect miR-21 expressions in tumor animals and controlled animal tissues,and verify expression changes of the above moleculesin the Wnt / β-catenin signaling pathway was determined in the animal level.Results:MTT assay results showed that miR-21 overexpression could markedly enhance cell absorbance value;that is,miR-21 could increase the ability proliferation of A549 cells.β-catenin and CyclinD1 expression levels were significantly higher in miR-21 mimic transfected cells(P<0.05),and Wnt 1 gene had no significant change.Wnt 1,β-catenin and CyclinD1 gene expression showed no significant change when miR-21 expression was suppressed,compared with controls.After cells were transfected with miR-21 mimics,cell invasion assay revealed that the perforated cells was significantly higher than the perforated cells in the control group(P<0.01).Lewis lung assay revealed that miR-21 expression levels in the Lewis lung carcinoma were significantly higher;and at the same time.Wnt1,β-catenin and CyclinD1 gene expression levels were significantly increased,compared to controls.Conclusions:In A549 human lung cancer cells and Lewis lung carcinoma in mice,key molecules β-catenin and CyclinD1 of miR-21 expressions and the Wnt/ β-catenin signaling pathway are positively correlated.展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most common malignancies worldwide.AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2(FOXF2)in patients with CRC and the relevant mechanisms.METHODS...BACKGROUND Colorectal cancer(CRC)is one of the most common malignancies worldwide.AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2(FOXF2)in patients with CRC and the relevant mechanisms.METHODS Sixty-two CRC patients admitted to the hospital were enrolled into the study group,and sixty healthy people from the same period were assigned to the control group.Elbow venous blood was sampled from the patients and healthy individuals,and blood serum was saved for later analysis.MiR-19a-3p mimics,miR-19a-3p inhibitor,miR-negative control,small interfering-FOXF2,and short hairpin-FOXF2 were transfected into HT29 and HCT116 cells.Then quantitative polymerase chain reaction was performed to quantify the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells,and western blot(WB)analysis was conducted to evaluate the levels of FOXF2,glycogen synthase kinase 3 beta(GSK-3β),phosphorylated GSK-3β(p-GSK-3β),β-catenin,p-β-catenin,α-catenin,Ncadherin,E-cadherin,and vimentin.The MTT,Transwell,and wound healing assays were applied to analyze cell proliferation,invasion,and migration,respectively,and the dual luciferase reporter assay was used to determine the correlation of miR-19a-3p with FOXF2.RESULTS The patients showed high serum levels of miR-19a-3p and low levels of FOXF2,and the area under the curves of miR-19a-3p and FOXF2 were larger than 0.8.MiR-19a-3p and FOXF2 were related to sex,tumor size,age,tumor-nodemetastasis staging,lymph node metastasis,and differentiation of CRC patients.Silencing of miR-19a-3p and overexpression of FOXF2 suppressed the epithelialmesenchymal transition,invasion,migration,and proliferation of cells.WB analysis revealed that silencing of miR-19a-3p and FOXF2 overexpression significantly suppressed the expression of p-GSK-3β,β-catenin,N-cadherin,and vimentin;and increased the levels of GSK-3β,p-β-catenin,α-catenin,and Ecadherin.The dual luciferase reporter assay confirmed that there was a targeted correlation of miR-19a-3p with FOXF2.In addition,a rescue experiment revealed that there were no differences in cell proliferation,invasion,and migration in HT29 and HCT116 cells co-transfected with miR-19a-3p-mimics+sh-FOXF2 and miR-19a-3p-inhibitor+si-FOXF2 compared to the miR-negative control group.CONCLUSION Inhibiting miR-19a-3p expression can upregulate the FOXF2-mediated Wnt/β-catenin signaling pathway,thereby affecting the epithelial-mesenchymal transition,proliferation,invasion,and migration of cells.Thus,miR-19a-3p is likely to be a therapeutic target in CRC.展开更多
The Wnt/β-catenin signaling pathway regulates many aspects of tumor biology,and many studies have focused on the role of this signaling pathway in tumor cells.However,it is now clear that tumor development and metast...The Wnt/β-catenin signaling pathway regulates many aspects of tumor biology,and many studies have focused on the role of this signaling pathway in tumor cells.However,it is now clear that tumor development and metastasis depend on the two-way interaction between cancer cells and their environment,thereby forming a tumor microenvironment(TME).In this review,we discuss how Wnt/β-catenin signaling regulates cross-interactions among different components of the TME,including immune cells,stem cells,tumor vasculature,and noncellular components of the TME in hepatocellular carcinoma.We also investigate their preclinical and clinical insights for primary liver cancer intervention,and explore the significance of using Wnt/β-catenin mutations as a biomarker to predict resistance in immunotherapy.展开更多
The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primiti...The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, Ckla, CklS, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification.展开更多
AIM To investigate the function and mechanism of ubiquitinlike modifier activating enzyme 2(Uba2) in progression of gastric cancer(GC) cells.METHODS Uba2 level in patients with GC was analyzed by Western blotting and ...AIM To investigate the function and mechanism of ubiquitinlike modifier activating enzyme 2(Uba2) in progression of gastric cancer(GC) cells.METHODS Uba2 level in patients with GC was analyzed by Western blotting and immunohistochemistry. MTT and colony formation assays were performed to examine cell proliferation.Flow cytometry was used for cell cycle analysis.Wound healing and Transwell assays were conducted to examine the effects of Uba2 on migration and invasion.Expression levels of cell cycle-related proteins, epithelial-mesenchymal transition(EMT) biomarkers, and involvement of the Wnt/β-catenin pathway was assessed by Western blotting. Activation of the Wnt/β-catenin pathway was confirmed by luciferase assay.RESULTS Uba2 expression was higher in GC than in normal tissues.Increased Uba2 expression was correlated with tissue differentiation, Lauren's classification, vascular invasion,and TNM stage, as determined by the analysis of 100 GC cases(P < 0.05). Knock-down of Uba2 inhibited GC cell proliferation, induced cell cycle arrest, and altered expression of cyclin D1, P21, P27, and Bcl-2, while upregulation of Uba2 showed the opposite effects. The wound healing and Transwell assays showed that Uba2 promoted GC cell migration and invasion. Western blotting revealed alterations in EMT biomarkers, suggesting the role of Uba2 in EMT. Furthermore, the luciferase reporter assay indicated the involvement of the Wnt/β-catenin signaling pathway as a possible modulator of Uba2 oncogenic functions.CONCLUSION Uba2 plays a vital role in GC cell migration and invasion,possibly by regulating the Wnt/β-catenin signaling pathway and EMT.展开更多
Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the proces...Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the process of calcification of aortic valve, porcine aortic valve interstitial cells(VICs) were isolated, cultured and stimulated with oxidized low density lipoprotein(ox-LDL) for 48 h to induce the differentiation of VICs into osteoblast-like cells. The key proteins and genes of Wnt/β-catenin signaling pathway, such as glycogen synthase kinase 3β(GSK-3β) and β-catenin, were detected by using Western blotting and real-time polymerase chain reaction(PCR). The results showed that the VICs managed to differentiate into osteoblast-like cells after the stimulation with ox-LDL and the levels of proteins and genes of GSK-3β and β-catenin were increased significantly in VICs after stimulation for 48 h(P0.05). It is suggested that Wnt/β-catenin signaling pathway may play a key role in the differentiation of VICs into osteoblast-like cells and make great contribution to aortic valve calcification.展开更多
Objectives:Improper activation of Wnt/β-catenin signaling has been implicated in human diseases.Beyond the well-studied glycogen synthase kinase 3p(GSK3p)and casein kinase 1(CK1),other kinases affecting Wnt/β-cateni...Objectives:Improper activation of Wnt/β-catenin signaling has been implicated in human diseases.Beyond the well-studied glycogen synthase kinase 3p(GSK3p)and casein kinase 1(CK1),other kinases affecting Wnt/β-catenin signaling remain to be defined.Methods:To identify the kinases that modulate Wnt/β-catenin signaling,we applied a kinase small interfering RNA(siRNA)library screen approach.Luciferase assays,immunoblotting,and real-time polymerase chain reaction(PCR)were performed to confirm the regulation o f the Wnt/β-catenin signaling pathway by cyclin-dependent kinase 11(CDK11)and to investigate the underlying mechanism.Confocal immunofluorescence,coimmunoprecipitation(co-IP),and scratch wound assays were used to demonstrate colocalization,detect protein interactions,and explore the function of CDK11.Results:CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/P-catenin signaling.Down-regulation of CDK11 led to the accumulation of Wnt/β-catenin signaling receptor complexes,in a manner dependent on intact adenomatosis polyposis coli(APC)protein.Further analysis showed that CDK11 modulation of Wnt/P-catenin signaling engaged the endolysosomal machinery,and CDK11 knockdown enhanced the colocalization of Wnt/β-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes.Mechanistically,CDK11 was found to function in Wnt/β-catenin signaling by regulating microtubule stability.Depletion of CDK11 down-regulated acetyl-a-tubulin.Moreover,co-IP assays demonstrated that CDK11 interacts with the a-tubulin deacetylase SIRT2,whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/(3-catenin signaling receptor complexes.CDK11 was found to suppress cell migration through altered W nt/β-catenin signaling.Conclusions:CDK11 is a negative modulator of Wnt/β-catenin signaling that stabilizes microtubules,thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.展开更多
Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica s...Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.展开更多
Objective:To study the effects of Wnt/β-catenin signaling pathway on the proliferation and invasive growth of cells in mantle cell lymphoma.Methods: Patients who were diagnosed with mantle cell lymphoma by lymph node...Objective:To study the effects of Wnt/β-catenin signaling pathway on the proliferation and invasive growth of cells in mantle cell lymphoma.Methods: Patients who were diagnosed with mantle cell lymphoma by lymph node biopsy in Tongji Hospital? Tongji Medical College Huazhong University of Science & Technology between March 2015 and May 2017 were selected as lymphoma group of the research, and patients who were diagnosed with reactive hyperplasia by lymph node biopsy during the same period were selected as the control group. The protein expression of Wnt/β-catenin signaling pathway molecules in lymph node tissues were determined by enzyme-linked immunosorbent assay kit, and the mRNA expression of proliferation genes and invasion genes were determined by fluorescence quantitative PCR kit.Results:β-catenin, p-GSK-3β and Tcf/Lef protein levels as well as C-myc, CyclinD1, Est-1, MMP9 and MMP26 mRNA expression in lymph node tissues of lymphoma group were significantly higher than those of control group whereas DKK1 and WIF-1 protein levels as well as Bax, Apaf1, Caspase-3, TNFAIP3, TIMP2 and TIMP4 mRNA expression were significantly lower than those of control group. C-myc, CyclinD1, Est-1, MMP9 and MMP26 mRNA expression in lymphoma tissues were positively correlated withβ-catenin, p-GSK-3β and Tcf/Lef protein levels, and negatively correlated with DKK1 and WIF-1 protein levels;Bax, Apaf1, Caspase-3, TNFAIP3, TIMP2 and TIMP4 mRNA expression were negatively correlated withβ-catenin, p-GSK-3β and Tcf/Lef protein levels, and positively correlated with DKK1 and WIF-1 protein levels.Conclusion: The activation of Wnt/β-catenin signaling pathway can promote the proliferation and invasive growth of cells in mantle cell lymphoma.展开更多
Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by...Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.展开更多
AIM: To comprehensively understand the underlying molecular events accounting for aberrant Wnt signaling activation in hepatocellular carcinoma(HCC).METHODS: This study was retrospective. The HCC tissue specimens used...AIM: To comprehensively understand the underlying molecular events accounting for aberrant Wnt signaling activation in hepatocellular carcinoma(HCC).METHODS: This study was retrospective. The HCC tissue specimens used in this research were obtained from patients who underwent liver surgery. The Catalogue of Somatic Mutations in Cancer(COSMIC) database was searched for the mutation statuses of CTNNB1, TP53, and protein degradation regulator genes of CTNNB1. Dual-luciferase reporter assay was performed with TOP/FOP reporters to detect whether TP53 gain-of-function(GOF) mutations could enhance the transcriptional activity of Wnt signaling. Methylation sensitive restriction enzyme-quantitative PCR was used to explore the methylation status of Cp G islands located in the promoters of APC, SFRP1, and SFRP5 in HCCs with different risk factors. Finally, nestedreverse transcription PCR was performed to examine the integration of HBx in front of LINE1 element and the existence of HBx-LINE1 chimeric transcript in Hepatitis B virus-related HCC. All results in this article were analyzed with the software SPSS version 19.0 for Windows, and different groups were compared by χ2 test as appropriate.RESULTS: Based on the data from COSMIC database, compared with other solid tumors, mutation frequency of CTNNB1 was significantly higher in HCC(P < 0.01). The rate of CTNNB1 mutation was significantly less frequent in Hepatitis B virus-related HCC than in other etiologies(P < 0.01). Dual-luciferase reporter system and TOP/FOP reporter assays confirmed that TP53 GOF mutants were able to enhance the transcriptional ability of Wnt signaling. An exclusive relationship between the status of TP53 and CTNNB1 mutations was observed. However, according to the COSMIC database, TP53 GOF mutation is rare in HCC, which indicates that TP53 GOF mutation is not a reason for the aberrant activation of Wnt signaling in HCC. APC and AXIN1 were mutated in HCC. By using methylation sensitive restriction enzyme-quantitative PCR, hypermethylation of APC was detected in HCC with different risk factors, whereas SFRP1 and SFRP5 were not hypermethylated in any of the HCC etiologies, which indicates thatthe mutation of APC and AXIN1, together with the methylation of APC could take part in the overactivation of Wnt signaling. Nested-reverse transcription PCR failed to detect the integration of HBx before the LINE1 element, or the existence of an HBx-LINE1 chimeric transcript, suggesting that integration could not play a role in the aberrant activation of Wnt signaling in HCC.CONCLUSION: In HCC, genetic/epigenetic aberration of CTNNB1 and its protein degradation regulators are the major cause of Wnt signaling overactivation.展开更多
Objective To determine whether acupotomy ameliorates immobilization-induced muscle contracture and fibrosis via Wnt/β-catenin signaling pathway.Methods Thirty Wistar rats were randomly divided into 5 groups(n=6)by a ...Objective To determine whether acupotomy ameliorates immobilization-induced muscle contracture and fibrosis via Wnt/β-catenin signaling pathway.Methods Thirty Wistar rats were randomly divided into 5 groups(n=6)by a random number table,including control,immobilization,passive stretching,acupotomy,and acupotomy 3 weeks(3-w)groups.The rat model of gastrocnemius contracture was established by immobilizing the right hind limb in plantar flexion for 4 weeks.Rats in the passive stretching group received passive stretching at gastrocnemius,a daily series of 10 repetitions for 30 s each at 30-s intervals for 10 consecutive days.Rats in the acupotomy and acupotomy 3-w groups received acupotomy once and combined with passive stretching at gastrocnemius a daily series of 10 repetitions for 30 s each at 30-s intervals for 10 consecutive days.Additionally,rats in the acupotomy 3-w group were allowed to walk freely for 3 weeks after 10-day therapy.After treatment,range of motion(ROM),gait analysis[i.e.,paw area,stance/swing and maximum ratio of paw area to paw area duration(Max dA/dT)],gastrocnemius wet weight and the ratio of muscle wet weight to body weight(MWW/BW)were tested.Gastrocnemius morphometric and muscle fiber cross-sectional area(CSA)were assessed by hematoxylin-eosin staining.Fibrosis-related mRNA expressions(i.e.,Wnt 1,β-catenin,axin-2,α-smooth muscle actin,fibronectin,and types I and III collagen)were measured using real-time quantitative polymerase chain reactions.Wnt 1,β-catenin and fibronectin concentrations were measured by enzyme-linked immunosorbent assay.Types I and III collagen in the perimysium and endomysium were analyzed using immunofluorescence.Results Compared with the control group,ROM,gait function,muscle weight,MWW/BW and CSA were significantly decreased in the immobilization group(all P<0.01),while protein levels of types I and III collagen,Wnt 1,β-catenin,fibronectin and mRNA levels of fibrosis-related genes were obviously increased(all P<0.01).Treatment with passive stretching or acupotomy restored ROM and gait function and increased muscle wet weight,MWW/BW and CSA(all P<0.05),while protein expression levels of Wnt 1,β-catenin,fibronectin,types I and III collagen and mRNA levels of fibrosis-related genes were remarkably declined compared with the immobilization group(all P<0.05).Compared with passive stretching group,ROM,gait function,MWW was remarkably restored(all P<0.05),and mRNA levels of fibrosis-related genes as well as protein expression levels of Wnt 1,β-catenin,fibronectin,types I and III collagen in the acupotomy group were obviously decreased(all P<0.05).Compared with the acupotomy group,ROM,paw area,Max dA/dT,and MWW were restored(all P<0.05),and mRNA levels of fibrosis-related genes along with protein levels of Wnt 1,β-catenin,fibronectin,types I and III collagen in the acupotomy 3-w group were decreased(P<0.05).Conclusion Improvements in motor function,muscle contractures,and muscle fibrosis induced by acupotomy correlates with the inhibition of Wnt/β-catenin signaling pathway.展开更多
基金Beijing Natural Science Foundation,Grant/Award Number:L222145 and L222030Emerging Engineering Interdisciplinary Project and the Fundamental Research Funds for the Central Universities,Grant/Award Number:PKU2022XGK008Peking University Medicine Fund of Fostering Young Scholars’Scientific&Technological Innovation,Grant/Award Number:BMU2022PY010。
文摘Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.
基金supported by the Zhejiang Province Traditional Chinese Medicine Health Science and Technology Program(2023ZL570).
文摘Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.
基金All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Southwest Medical University(Protocol No.SWMU20230818).
文摘BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.
基金Supported by Central Level Public Welfare Scientific Research Institute"Advantageous Diseases-Hospital Preparations-New Drug Preparation Research and Development Project"(ZZZ15-XY-CT-01)Major Gynecology Program of Science and Technology Innovation Project,China Academy of Chinese Medical Sciences(CI2021A02408).
文摘[Objectives] To explore the therapeutic effect and mechanism of Qigongwan on PCOS model rats by detecting the changes in sex hormone levels in rats with polycystic ovary syndrome (PCOS), and observing the effects of ovarian pathological morphological changes, apoptosis and expression of Wnt/β-β catenin signaling pathway protein. [Methods] Ten of 40 female SD rats were randomly selected as the normal group, and the other 30 rats were treated with letrozole combined with high-fat diet to establish the PCOS rat model. After successful modeling, the model group was randomly divided into Qigongwan group, positive Daying-35 (Ethinylestradiol and Cyproterone Acetate Tablets) group and model group, with 10 rats in each group. Qigongwan group was given 14.7 g/(kg·d) by gavage, Daying-35 group was given 0.21 mg/(kg·d) by oral gavage, and normal group and model group were given the same amount of distilled water, and the intervention lasted for 21 d. ELISA method was used to detect the levels of hormones such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E 2) and progesterone (P) in serum. HE staining was used to observe the pathological morphological changes of ovarian tissues;TUNEL staining was used to observe apoptosis of ovarian tissue granule cells;the expression of Wnt, β-catenin protein in rat ovarian tissue was detected by immunohistochemistry. [Results] (i) Compared with the model group, Qigongwan group and Daying-35 group could significantly increase serum E 2 and P levels, significantly reduce serum T levels ( P <0.01), significantly reduce serum LH levels and LH/FSH ratio ( P <0.01), and increase serum FSH levels ( P <0.05) in different degrees. (ii)The results of HE staining showed that compared with the model group, Qigongwan and Daying-35 groups could improve follicular development and reduce atretic follicles in different degrees. Compared with Daying-35 group, the number of GC layers in Qigongwan group was significantly increased. (iii) The results of TUNEL staining showed that compared with the model group, the rate of TUNEL-positive cells in the Qigongwan group and Daying-35 group decreased significantly ( P <0.01). (iv) The immunohistochemical results showed that compared with the model group, the expression levels of wnt and β-catenin in the Qigongwan group and the Daying-35 group increased in different degrees ( P <0.05), and the expression range increased. [Conclusions] Qigongwan can regulate the secretion level of sex hormones such as FSH and LH, improve the pathological damage of ovarian tissue, and inhibit apoptosis of ovarian granule cells, and its mechanism may be related to the activation of Wnt/β-catenin signaling pathway.
基金National Natural Science Foundation Project (No.81860838)Guangxi Natural Science Foundation Project (No.GXNSFAA297246)。
文摘Diabetic nephropathy(DN)is the most serious microvascular complication of diabetes mellitus,which is highly prevalent worldwide.Abnormal activation of Wnt/β-catenin signaling pathway is an important mechanism of renal damage induced by hyperglycemia.Many studies have shown that TCM has the advantages of high efficiency and safety in the prevention and treatment of DN.Some TCM monomers and compounds repair podocyte function and inhibit transdifferentiation process by inhibiting the activation of Wnt/β-catenin signaling pathway,thus playing a protective role in kidney.Based on this,this paper will review the existing research results and related mechanisms of TCM intervention in Wnt/β-catenin signaling pathway in the treatment of DN,in order to promote the more effective and reasonable application of TCM in clinical practice.
基金supported by NIH grant AR053293the Van Andel Research Institutesupported by the Van Andel Institute Graduate School
文摘The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRPS), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
文摘AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo. METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse transcription polymerase chain reaction (RTPCR) from embryonic pancreas in different periods and normal pancreas of rat, respectively. Protein expression of these genes in embryonic pancreas of E14.5-E18.5 was examined by immunohistochemical method. RESULTS: In embryonic pancreas of E14.5, the transcript amplification of β-catenin and cyclinD1 genes was detected. In embryonic pancreas of E18.5, the transcription levels of β-catenin and cyclinD1 genes became much higher than in other periods. But in adult rat pancreas the transcription of cyclinD1 gene could not be observed. Only until E18.5, the transcript amplification of mRNA of APC gene could be detected. Surprisingly, the transcription level of APC gene became much higher in adult rat pancreas than in embryonic pancreas. By means of immunohistochemical staining, identical results were obtained to the above by RP-PCR, except for β-catenin protein in adult rat pancreas. CONCLUSION: Active Wnt/β-catenin signaling occurs in rat embryonic pancreas and is probably important for pancreatic development and organ formation.
基金supported by grants from the National Natural Science Foundation of China,No.81171799,81471854a Special Financial Grant from the China Postdoctoral Science Foundation,No.2013T60948
文摘The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.
基金supported by Key Project of Zhejing Board(2012ZA032)
文摘Objective:To study the mechanism of effect of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice.Methods:The effect of miR-21 on A549 cells were detected by MTT method.MiR-21 expression levels were overexpressed or inhibited in A549 cells by transfecting with miR-21 mimics or inhibitors.Correlation among key molecules(Wnt1,β-catenin.CyclinD1 and miR-21) of mRNA and protein levels in Wnt/β-catenin signaling pathway were studied by Real-time PCR and Western blot hybridization assay.Invasive ability of A549 cells was determined via Transwell chamber cell invasion assay;the role of miR-21 in A549 cells was explored via the Wnt/β-catenin signaling pathway.A Lewis lung carcinoma animal model was established to detect miR-21 expressions in tumor animals and controlled animal tissues,and verify expression changes of the above moleculesin the Wnt / β-catenin signaling pathway was determined in the animal level.Results:MTT assay results showed that miR-21 overexpression could markedly enhance cell absorbance value;that is,miR-21 could increase the ability proliferation of A549 cells.β-catenin and CyclinD1 expression levels were significantly higher in miR-21 mimic transfected cells(P<0.05),and Wnt 1 gene had no significant change.Wnt 1,β-catenin and CyclinD1 gene expression showed no significant change when miR-21 expression was suppressed,compared with controls.After cells were transfected with miR-21 mimics,cell invasion assay revealed that the perforated cells was significantly higher than the perforated cells in the control group(P<0.01).Lewis lung assay revealed that miR-21 expression levels in the Lewis lung carcinoma were significantly higher;and at the same time.Wnt1,β-catenin and CyclinD1 gene expression levels were significantly increased,compared to controls.Conclusions:In A549 human lung cancer cells and Lewis lung carcinoma in mice,key molecules β-catenin and CyclinD1 of miR-21 expressions and the Wnt/ β-catenin signaling pathway are positively correlated.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most common malignancies worldwide.AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2(FOXF2)in patients with CRC and the relevant mechanisms.METHODS Sixty-two CRC patients admitted to the hospital were enrolled into the study group,and sixty healthy people from the same period were assigned to the control group.Elbow venous blood was sampled from the patients and healthy individuals,and blood serum was saved for later analysis.MiR-19a-3p mimics,miR-19a-3p inhibitor,miR-negative control,small interfering-FOXF2,and short hairpin-FOXF2 were transfected into HT29 and HCT116 cells.Then quantitative polymerase chain reaction was performed to quantify the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells,and western blot(WB)analysis was conducted to evaluate the levels of FOXF2,glycogen synthase kinase 3 beta(GSK-3β),phosphorylated GSK-3β(p-GSK-3β),β-catenin,p-β-catenin,α-catenin,Ncadherin,E-cadherin,and vimentin.The MTT,Transwell,and wound healing assays were applied to analyze cell proliferation,invasion,and migration,respectively,and the dual luciferase reporter assay was used to determine the correlation of miR-19a-3p with FOXF2.RESULTS The patients showed high serum levels of miR-19a-3p and low levels of FOXF2,and the area under the curves of miR-19a-3p and FOXF2 were larger than 0.8.MiR-19a-3p and FOXF2 were related to sex,tumor size,age,tumor-nodemetastasis staging,lymph node metastasis,and differentiation of CRC patients.Silencing of miR-19a-3p and overexpression of FOXF2 suppressed the epithelialmesenchymal transition,invasion,migration,and proliferation of cells.WB analysis revealed that silencing of miR-19a-3p and FOXF2 overexpression significantly suppressed the expression of p-GSK-3β,β-catenin,N-cadherin,and vimentin;and increased the levels of GSK-3β,p-β-catenin,α-catenin,and Ecadherin.The dual luciferase reporter assay confirmed that there was a targeted correlation of miR-19a-3p with FOXF2.In addition,a rescue experiment revealed that there were no differences in cell proliferation,invasion,and migration in HT29 and HCT116 cells co-transfected with miR-19a-3p-mimics+sh-FOXF2 and miR-19a-3p-inhibitor+si-FOXF2 compared to the miR-negative control group.CONCLUSION Inhibiting miR-19a-3p expression can upregulate the FOXF2-mediated Wnt/β-catenin signaling pathway,thereby affecting the epithelial-mesenchymal transition,proliferation,invasion,and migration of cells.Thus,miR-19a-3p is likely to be a therapeutic target in CRC.
基金supported by the National Research Program of China(Grant Nos.2017YFA0505803 and 2017YFC0908100)the State Key Project for Infectious Diseases(Grant Nos.2018ZX10732202-001 and 2018ZX10302207-004)the National Natural Science Foundation of China(Grant Nos.81790633,61922047,and 81902412).
文摘The Wnt/β-catenin signaling pathway regulates many aspects of tumor biology,and many studies have focused on the role of this signaling pathway in tumor cells.However,it is now clear that tumor development and metastasis depend on the two-way interaction between cancer cells and their environment,thereby forming a tumor microenvironment(TME).In this review,we discuss how Wnt/β-catenin signaling regulates cross-interactions among different components of the TME,including immune cells,stem cells,tumor vasculature,and noncellular components of the TME in hepatocellular carcinoma.We also investigate their preclinical and clinical insights for primary liver cancer intervention,and explore the significance of using Wnt/β-catenin mutations as a biomarker to predict resistance in immunotherapy.
基金financially supported by the National Natural Science Foundation of China(31372188,31471986)the Science and Technology Innovation Commission of Shenzhen Municipality(CXZZ20120614164555920)
文摘The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, Ckla, CklS, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification.
基金the Science and Technology Department of Jilin Province(No.20150204006YY)
文摘AIM To investigate the function and mechanism of ubiquitinlike modifier activating enzyme 2(Uba2) in progression of gastric cancer(GC) cells.METHODS Uba2 level in patients with GC was analyzed by Western blotting and immunohistochemistry. MTT and colony formation assays were performed to examine cell proliferation.Flow cytometry was used for cell cycle analysis.Wound healing and Transwell assays were conducted to examine the effects of Uba2 on migration and invasion.Expression levels of cell cycle-related proteins, epithelial-mesenchymal transition(EMT) biomarkers, and involvement of the Wnt/β-catenin pathway was assessed by Western blotting. Activation of the Wnt/β-catenin pathway was confirmed by luciferase assay.RESULTS Uba2 expression was higher in GC than in normal tissues.Increased Uba2 expression was correlated with tissue differentiation, Lauren's classification, vascular invasion,and TNM stage, as determined by the analysis of 100 GC cases(P < 0.05). Knock-down of Uba2 inhibited GC cell proliferation, induced cell cycle arrest, and altered expression of cyclin D1, P21, P27, and Bcl-2, while upregulation of Uba2 showed the opposite effects. The wound healing and Transwell assays showed that Uba2 promoted GC cell migration and invasion. Western blotting revealed alterations in EMT biomarkers, suggesting the role of Uba2 in EMT. Furthermore, the luciferase reporter assay indicated the involvement of the Wnt/β-catenin signaling pathway as a possible modulator of Uba2 oncogenic functions.CONCLUSION Uba2 plays a vital role in GC cell migration and invasion,possibly by regulating the Wnt/β-catenin signaling pathway and EMT.
基金supported by the National Natural Science Foundation of China(No.81070190)
文摘Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the process of calcification of aortic valve, porcine aortic valve interstitial cells(VICs) were isolated, cultured and stimulated with oxidized low density lipoprotein(ox-LDL) for 48 h to induce the differentiation of VICs into osteoblast-like cells. The key proteins and genes of Wnt/β-catenin signaling pathway, such as glycogen synthase kinase 3β(GSK-3β) and β-catenin, were detected by using Western blotting and real-time polymerase chain reaction(PCR). The results showed that the VICs managed to differentiate into osteoblast-like cells after the stimulation with ox-LDL and the levels of proteins and genes of GSK-3β and β-catenin were increased significantly in VICs after stimulation for 48 h(P0.05). It is suggested that Wnt/β-catenin signaling pathway may play a key role in the differentiation of VICs into osteoblast-like cells and make great contribution to aortic valve calcification.
基金grants from the National Natural Science Foundation of China(Grant No.81530084,81874200,and 81572750)the Hunan Science and Technology Department(Grant No.2018RS3028)+1 种基金Central South University(Grant No.20170033010007)The Strategy-Orientated Special Project of Central South University(Grant No.ZLXD2017003).
文摘Objectives:Improper activation of Wnt/β-catenin signaling has been implicated in human diseases.Beyond the well-studied glycogen synthase kinase 3p(GSK3p)and casein kinase 1(CK1),other kinases affecting Wnt/β-catenin signaling remain to be defined.Methods:To identify the kinases that modulate Wnt/β-catenin signaling,we applied a kinase small interfering RNA(siRNA)library screen approach.Luciferase assays,immunoblotting,and real-time polymerase chain reaction(PCR)were performed to confirm the regulation o f the Wnt/β-catenin signaling pathway by cyclin-dependent kinase 11(CDK11)and to investigate the underlying mechanism.Confocal immunofluorescence,coimmunoprecipitation(co-IP),and scratch wound assays were used to demonstrate colocalization,detect protein interactions,and explore the function of CDK11.Results:CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/P-catenin signaling.Down-regulation of CDK11 led to the accumulation of Wnt/β-catenin signaling receptor complexes,in a manner dependent on intact adenomatosis polyposis coli(APC)protein.Further analysis showed that CDK11 modulation of Wnt/P-catenin signaling engaged the endolysosomal machinery,and CDK11 knockdown enhanced the colocalization of Wnt/β-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes.Mechanistically,CDK11 was found to function in Wnt/β-catenin signaling by regulating microtubule stability.Depletion of CDK11 down-regulated acetyl-a-tubulin.Moreover,co-IP assays demonstrated that CDK11 interacts with the a-tubulin deacetylase SIRT2,whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/(3-catenin signaling receptor complexes.CDK11 was found to suppress cell migration through altered W nt/β-catenin signaling.Conclusions:CDK11 is a negative modulator of Wnt/β-catenin signaling that stabilizes microtubules,thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.
基金supported by the National Natural Science Foundation of China(Grant No.81873103)the Foundation and Frontier Research Project of Chongqing Science and Technology Commission(Grant No.cstc2014jcyjA10001).
文摘Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.
基金National Program on Key Basic Rescarch Projcct of China(973 Program)(No:2005CB5225007)Key Clinical Rescarch Projcct of the Ministry of Hcalth(No.:2010-2012)National Scicnce and Tochnology Support Program during the"11th Five-Year Plan"No.:2006BAI05A07)
文摘Objective:To study the effects of Wnt/β-catenin signaling pathway on the proliferation and invasive growth of cells in mantle cell lymphoma.Methods: Patients who were diagnosed with mantle cell lymphoma by lymph node biopsy in Tongji Hospital? Tongji Medical College Huazhong University of Science & Technology between March 2015 and May 2017 were selected as lymphoma group of the research, and patients who were diagnosed with reactive hyperplasia by lymph node biopsy during the same period were selected as the control group. The protein expression of Wnt/β-catenin signaling pathway molecules in lymph node tissues were determined by enzyme-linked immunosorbent assay kit, and the mRNA expression of proliferation genes and invasion genes were determined by fluorescence quantitative PCR kit.Results:β-catenin, p-GSK-3β and Tcf/Lef protein levels as well as C-myc, CyclinD1, Est-1, MMP9 and MMP26 mRNA expression in lymph node tissues of lymphoma group were significantly higher than those of control group whereas DKK1 and WIF-1 protein levels as well as Bax, Apaf1, Caspase-3, TNFAIP3, TIMP2 and TIMP4 mRNA expression were significantly lower than those of control group. C-myc, CyclinD1, Est-1, MMP9 and MMP26 mRNA expression in lymphoma tissues were positively correlated withβ-catenin, p-GSK-3β and Tcf/Lef protein levels, and negatively correlated with DKK1 and WIF-1 protein levels;Bax, Apaf1, Caspase-3, TNFAIP3, TIMP2 and TIMP4 mRNA expression were negatively correlated withβ-catenin, p-GSK-3β and Tcf/Lef protein levels, and positively correlated with DKK1 and WIF-1 protein levels.Conclusion: The activation of Wnt/β-catenin signaling pathway can promote the proliferation and invasive growth of cells in mantle cell lymphoma.
基金supported by grants PFB (Basal Financing Program) 12/2007 from the Basal Centre for Excellence in Science and Technology and FONDECYT,No.1120156(to NCI)a pre-doctoral fellowship from the National Commission of Science and Technology of Chile(CONICYT)(to CTR)
文摘Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.
基金Supported by National Natural Science Foundation of China,No.81372603973 Program,No.2015CB554000+1 种基金National S T Major Project for Infectious Diseases,No.2012ZX10004-904The 111 Project,No.B07001
文摘AIM: To comprehensively understand the underlying molecular events accounting for aberrant Wnt signaling activation in hepatocellular carcinoma(HCC).METHODS: This study was retrospective. The HCC tissue specimens used in this research were obtained from patients who underwent liver surgery. The Catalogue of Somatic Mutations in Cancer(COSMIC) database was searched for the mutation statuses of CTNNB1, TP53, and protein degradation regulator genes of CTNNB1. Dual-luciferase reporter assay was performed with TOP/FOP reporters to detect whether TP53 gain-of-function(GOF) mutations could enhance the transcriptional activity of Wnt signaling. Methylation sensitive restriction enzyme-quantitative PCR was used to explore the methylation status of Cp G islands located in the promoters of APC, SFRP1, and SFRP5 in HCCs with different risk factors. Finally, nestedreverse transcription PCR was performed to examine the integration of HBx in front of LINE1 element and the existence of HBx-LINE1 chimeric transcript in Hepatitis B virus-related HCC. All results in this article were analyzed with the software SPSS version 19.0 for Windows, and different groups were compared by χ2 test as appropriate.RESULTS: Based on the data from COSMIC database, compared with other solid tumors, mutation frequency of CTNNB1 was significantly higher in HCC(P < 0.01). The rate of CTNNB1 mutation was significantly less frequent in Hepatitis B virus-related HCC than in other etiologies(P < 0.01). Dual-luciferase reporter system and TOP/FOP reporter assays confirmed that TP53 GOF mutants were able to enhance the transcriptional ability of Wnt signaling. An exclusive relationship between the status of TP53 and CTNNB1 mutations was observed. However, according to the COSMIC database, TP53 GOF mutation is rare in HCC, which indicates that TP53 GOF mutation is not a reason for the aberrant activation of Wnt signaling in HCC. APC and AXIN1 were mutated in HCC. By using methylation sensitive restriction enzyme-quantitative PCR, hypermethylation of APC was detected in HCC with different risk factors, whereas SFRP1 and SFRP5 were not hypermethylated in any of the HCC etiologies, which indicates thatthe mutation of APC and AXIN1, together with the methylation of APC could take part in the overactivation of Wnt signaling. Nested-reverse transcription PCR failed to detect the integration of HBx before the LINE1 element, or the existence of an HBx-LINE1 chimeric transcript, suggesting that integration could not play a role in the aberrant activation of Wnt signaling in HCC.CONCLUSION: In HCC, genetic/epigenetic aberration of CTNNB1 and its protein degradation regulators are the major cause of Wnt signaling overactivation.
基金Supported by the Beijing University of Chinese Medicine Research Platform Construction Project(No.2023-JYB-KYPT-11)。
文摘Objective To determine whether acupotomy ameliorates immobilization-induced muscle contracture and fibrosis via Wnt/β-catenin signaling pathway.Methods Thirty Wistar rats were randomly divided into 5 groups(n=6)by a random number table,including control,immobilization,passive stretching,acupotomy,and acupotomy 3 weeks(3-w)groups.The rat model of gastrocnemius contracture was established by immobilizing the right hind limb in plantar flexion for 4 weeks.Rats in the passive stretching group received passive stretching at gastrocnemius,a daily series of 10 repetitions for 30 s each at 30-s intervals for 10 consecutive days.Rats in the acupotomy and acupotomy 3-w groups received acupotomy once and combined with passive stretching at gastrocnemius a daily series of 10 repetitions for 30 s each at 30-s intervals for 10 consecutive days.Additionally,rats in the acupotomy 3-w group were allowed to walk freely for 3 weeks after 10-day therapy.After treatment,range of motion(ROM),gait analysis[i.e.,paw area,stance/swing and maximum ratio of paw area to paw area duration(Max dA/dT)],gastrocnemius wet weight and the ratio of muscle wet weight to body weight(MWW/BW)were tested.Gastrocnemius morphometric and muscle fiber cross-sectional area(CSA)were assessed by hematoxylin-eosin staining.Fibrosis-related mRNA expressions(i.e.,Wnt 1,β-catenin,axin-2,α-smooth muscle actin,fibronectin,and types I and III collagen)were measured using real-time quantitative polymerase chain reactions.Wnt 1,β-catenin and fibronectin concentrations were measured by enzyme-linked immunosorbent assay.Types I and III collagen in the perimysium and endomysium were analyzed using immunofluorescence.Results Compared with the control group,ROM,gait function,muscle weight,MWW/BW and CSA were significantly decreased in the immobilization group(all P<0.01),while protein levels of types I and III collagen,Wnt 1,β-catenin,fibronectin and mRNA levels of fibrosis-related genes were obviously increased(all P<0.01).Treatment with passive stretching or acupotomy restored ROM and gait function and increased muscle wet weight,MWW/BW and CSA(all P<0.05),while protein expression levels of Wnt 1,β-catenin,fibronectin,types I and III collagen and mRNA levels of fibrosis-related genes were remarkably declined compared with the immobilization group(all P<0.05).Compared with passive stretching group,ROM,gait function,MWW was remarkably restored(all P<0.05),and mRNA levels of fibrosis-related genes as well as protein expression levels of Wnt 1,β-catenin,fibronectin,types I and III collagen in the acupotomy group were obviously decreased(all P<0.05).Compared with the acupotomy group,ROM,paw area,Max dA/dT,and MWW were restored(all P<0.05),and mRNA levels of fibrosis-related genes along with protein levels of Wnt 1,β-catenin,fibronectin,types I and III collagen in the acupotomy 3-w group were decreased(P<0.05).Conclusion Improvements in motor function,muscle contractures,and muscle fibrosis induced by acupotomy correlates with the inhibition of Wnt/β-catenin signaling pathway.