AIM To investigate the potential role of micro RNA-30 a(mi R-30 a) in esophageal squamous cell carcinoma(ESCC).METHODS Expression of mi R-30 a-3 p/5 p was analyzed using microarray data and fresh ESCC tissue samples. ...AIM To investigate the potential role of micro RNA-30 a(mi R-30 a) in esophageal squamous cell carcinoma(ESCC).METHODS Expression of mi R-30 a-3 p/5 p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of mi R-30 a-3 p/5 p on ESCC cell proliferation. Furthermore,Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC,and then,assays were carried out to verify the potential molecular mechanism of mi R-30 a in ESCC.RESULTS Low expression of mi R-30 a-3 p/5 p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of mi R-30 a-3 p/5 p promoted ESCC cell proliferation. Increased mi R-30 a-3 p/5 p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2.CONCLUSION Down-regulation of mi R-30 a-3 p/5 p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.展开更多
Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica s...Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.展开更多
Backgroud: Wingless-type MMTV integration site family member 5a (Wnt5a) is involved in carcinogenesis.However, little data are available in Wnt5a signaling with hepatocellular carcinoma (HCC). In thepresent study...Backgroud: Wingless-type MMTV integration site family member 5a (Wnt5a) is involved in carcinogenesis.However, little data are available in Wnt5a signaling with hepatocellular carcinoma (HCC). In thepresent study, we investigated the expression of hepatic Wnt5a in HCC and the role of Wnt5a in HCCprogression and outcome.展开更多
OBJECTIVE:To unmask the underlying mechanisms of Yisui granule(益髓颗粒,YSG)for the treatment of Myelodysplastic syndromes(MDS).METHODS:Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor po...OBJECTIVE:To unmask the underlying mechanisms of Yisui granule(益髓颗粒,YSG)for the treatment of Myelodysplastic syndromes(MDS).METHODS:Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety,assess its effect on overall survival(OS),and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5(s FRP5)gene and suppressing Wnt/β-catenin pathway.Bisulfite amplicon sequencing was applied to detect the level of methylation of the s FRP5 gene;western blotting,immunofluorescence staining,and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1(DNMT1),s FRP5,and other Wnt/β-catenin pathway-related m RNA and protein expression.RESULTS:The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine,improved OS,and reduced long-term adverse effects in the long term.Mechanically,YSG reduced the expression of DNMT1 methyltransferase,decreased the methylation,and increased the expression of the Wnt/β-catenin pathway antagonist-s FRP5.Furthermore,components of the Wnt/β-catenin pathway,including Wnt3a,β-catenin,c-Myc,and cyclin D1,were down-regulated in response to YSG,suggesting that YSG could treat MDS by demethylating the s FRP5 gene and suppressing the Wnt/β-catenin pathway.CONCLUSIONS:Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model,providing an alternative solution for treating MDS.展开更多
基金Supported by the Youth Fund of the First Affiliated Hospital of Xinxiang Medical University(Type A-4)
文摘AIM To investigate the potential role of micro RNA-30 a(mi R-30 a) in esophageal squamous cell carcinoma(ESCC).METHODS Expression of mi R-30 a-3 p/5 p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of mi R-30 a-3 p/5 p on ESCC cell proliferation. Furthermore,Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC,and then,assays were carried out to verify the potential molecular mechanism of mi R-30 a in ESCC.RESULTS Low expression of mi R-30 a-3 p/5 p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of mi R-30 a-3 p/5 p promoted ESCC cell proliferation. Increased mi R-30 a-3 p/5 p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2.CONCLUSION Down-regulation of mi R-30 a-3 p/5 p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.
基金supported by the National Natural Science Foundation of China(Grant No.81873103)the Foundation and Frontier Research Project of Chongqing Science and Technology Commission(Grant No.cstc2014jcyjA10001).
文摘Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.
基金supported by grants from the National Natural Science Foundation of China(81673241,81401988 and 81702419)Jiangsu Medical Science(BE2016698)+2 种基金Jiangsu Government Scholarship for Overseas Studies(JS-2014-209 and JS-2014-208)Projects of Nantong Health and Family Planning Commission Fund(WQ2016083)Jiangsu Graduate Innovation of China(KYCX17_1934)
文摘Backgroud: Wingless-type MMTV integration site family member 5a (Wnt5a) is involved in carcinogenesis.However, little data are available in Wnt5a signaling with hepatocellular carcinoma (HCC). In thepresent study, we investigated the expression of hepatic Wnt5a in HCC and the role of Wnt5a in HCCprogression and outcome.
基金Clinical Translational Research of Beijing Municipal Science and Technology Commission,Administrative Commission of Zhongguancun Science Park-funded Project:Study on Mechanisms and Efficacy of Yisui granule Treating Low and Intermediate Risk of Myelodysplastic Syndromes via DNA Demethylation(No.Z211100002921018)National Natural Science Foundation of Chinafunded Projects:Study on Molecular Mechanisms of Yisui granule Treating Myelodysplastic Syndromes via Regulating DNA Methylation(No.81503575)+1 种基金Mechanism Study of Tea Polyphenols activating c GAS-STING Pathway to Inhibit Lung Adenocarcinoma Immune Escape based on Redox Balance(No.82172760)the Golden Bridge Project of Beijing Association for Science and Technology-funded Project:Study on Mechanisms of Yisui granule Treating Low and Intermediate Risk of Myelodysplastic Syndromes via DNA Demethylation(No.ZZ20059)。
文摘OBJECTIVE:To unmask the underlying mechanisms of Yisui granule(益髓颗粒,YSG)for the treatment of Myelodysplastic syndromes(MDS).METHODS:Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety,assess its effect on overall survival(OS),and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5(s FRP5)gene and suppressing Wnt/β-catenin pathway.Bisulfite amplicon sequencing was applied to detect the level of methylation of the s FRP5 gene;western blotting,immunofluorescence staining,and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1(DNMT1),s FRP5,and other Wnt/β-catenin pathway-related m RNA and protein expression.RESULTS:The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine,improved OS,and reduced long-term adverse effects in the long term.Mechanically,YSG reduced the expression of DNMT1 methyltransferase,decreased the methylation,and increased the expression of the Wnt/β-catenin pathway antagonist-s FRP5.Furthermore,components of the Wnt/β-catenin pathway,including Wnt3a,β-catenin,c-Myc,and cyclin D1,were down-regulated in response to YSG,suggesting that YSG could treat MDS by demethylating the s FRP5 gene and suppressing the Wnt/β-catenin pathway.CONCLUSIONS:Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model,providing an alternative solution for treating MDS.