In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wol...In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.展开更多
Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new de...Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.展开更多
Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that...Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that in [3] and relaxed beta(k) to be negative with the objective function being convex. This paper allows beta(k) to be selected in a wider range than [5]. Especially, the global convergence of the corresponding algorithm without sufficient decrease condition is proved.展开更多
In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, ...In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method. The global convergence of this hybrid memoryless method is proved under mild assumptions. The initial results show that these new methods are efficient for the given test problems. Especially the memoryless non-quasi-Newton method requires little storage and computation, so it is able to efficiently solve large scale optimization problems.展开更多
基金Supported by the Fund of Chongqing Education Committee(KJ091104)
文摘In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.
基金Supported by The Youth Project Foundation of Chongqing Three Gorges University(13QN17)Supported by the Fund of Scientific Research in Southeast University(the Support Project of Fundamental Research)
文摘Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.
文摘Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that in [3] and relaxed beta(k) to be negative with the objective function being convex. This paper allows beta(k) to be selected in a wider range than [5]. Especially, the global convergence of the corresponding algorithm without sufficient decrease condition is proved.
基金Foundation item: the National Natural Science Foundation of China (No. 60472071) the Science Foundation of Beijing Municipal Commission of Education (No. KM200710028001).
文摘In this paper, a new class of memoryless non-quasi-Newton method for solving unconstrained optimization problems is proposed, and the global convergence of this method with inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method. The global convergence of this hybrid memoryless method is proved under mild assumptions. The initial results show that these new methods are efficient for the given test problems. Especially the memoryless non-quasi-Newton method requires little storage and computation, so it is able to efficiently solve large scale optimization problems.