The development of alternative wood composites based on the use of waste or recycled materials can be beneficial due to over exploitation of natural resources.Under this frame,an option for the successful utilization ...The development of alternative wood composites based on the use of waste or recycled materials can be beneficial due to over exploitation of natural resources.Under this frame,an option for the successful utilization of waste polystyrene which avoids environmental problems that formaldehyde adhesives cause and also reduces waste dis-posal,is its potential application as a binder for the production of value-added environmentally friendly and low cost wood composites.Two types of panel were successfully made,consisting of wood dust and two recycled poly-styrene contents,namely,15%and 30%.Both physical properties,water absorption and thickness swelling,and mechanical properties,modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength,were significantly improved as the recycled polystyrene content increased from 15%to 30%.Water absorption and thickness swelling after 24 h immersion in water were improved by 165%and 750%as the recycled polystyrene content increased from 15%to 30%.The magnitude of the improvement in mechanical properties however,was less pronounced than of the physical properties since modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength were increased by 43.6%,50%and 61.5%,respec-tively.The low viscosity of the recycled polystyrene caused more mobility inside the panel matrix and therefore,an improved penetration took place into adequate depth of the compressed dust particles.It is concluded that boards can be successfully produced using these waste raw materials,wood dust and recycled polystyrene in organic solvent as a binder,and therefore it can reduce waste disposal and provide cleaner production for the development of wood-based boards.展开更多
Woody biomass is a widely-used and favourable material for energy production due to its carbon neutral status. Energy is generally derived either through direct combustion or gasification. The Irish forestry sector is...Woody biomass is a widely-used and favourable material for energy production due to its carbon neutral status. Energy is generally derived either through direct combustion or gasification. The Irish forestry sector is forecasted to expand significantly in coming years, and so the opportunity exists for the bioenergy sector to take advantage of the material for which there will be no demand from current markets. A by-product of wood processing, wood dust is the cheapest form of wood material available to the bioenergy sector. Currently wood dust is primarily processed into wood pellets for energy generation. Research was conducted on post-processing birch wood dust;the calorific value and the Wobbe Index were determined for a number of wood particle sizes and wood dust concentrations. The Wobbe Index determined for the upper explosive concentration (4000 g/m3) falls within range of that of hydrogen gas, and wood dust-air mixtures of this concentration could therefore behave in a similar manner in a gas turbine. Due to its slightly lower HHV and higher particle density, however, alterations to the gas turbine would be necessary to accommodate wood dust to prevent abrasive damage to the turbine. As an unwanted by-product of wood processing the direct use of wood dust in a gas turbine for energy generation could therefore have economic and environmental benefits.展开更多
An experimental study was carried out on bricks using local materials in order to take into account the waste wood management to protect the environment and to reduce the cost of the habitat. Chips and sawdust were bu...An experimental study was carried out on bricks using local materials in order to take into account the waste wood management to protect the environment and to reduce the cost of the habitat. Chips and sawdust were built-in clay bricks in order to study their influence on the compressive strength, Young’s modulus and the speed for soundproofing. Testings in compressive strength were made on the parallelepiped clay bricks, stabilized with different percentages of cement, with incorporation to various percentages of sawdust or wood chips (Mahogany), using a universal press. Young’s modulus was measured from the speed of sound by the ultrasonic method. The results obtained show that the incorporation of mahogany tree chips in the stabilized brick at 8% of cement, does not have much effect on the compressive strength. It was found that the incorporation of chips or sawdust on the clay brick, does not improve the compressive strength. The Young’s modulus decreases with increasing content of sawdust and practically remains constant regardless of the content of chips at 4% and 6% of cement. The clay brick mixed with 8% of mahogany sawdust can be an acoustic barrier.展开更多
基金This research is co-financed by Greece and the European Union(European Social Fund-ESF)through the Operational Programme‘Human Resources,Development,Education and Lifelong Learning 2014-2020’in the context of the project‘Innovative wood plastic composites made from recycled polystyrene and recycled wood chips’(MIS 5048422).
文摘The development of alternative wood composites based on the use of waste or recycled materials can be beneficial due to over exploitation of natural resources.Under this frame,an option for the successful utilization of waste polystyrene which avoids environmental problems that formaldehyde adhesives cause and also reduces waste dis-posal,is its potential application as a binder for the production of value-added environmentally friendly and low cost wood composites.Two types of panel were successfully made,consisting of wood dust and two recycled poly-styrene contents,namely,15%and 30%.Both physical properties,water absorption and thickness swelling,and mechanical properties,modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength,were significantly improved as the recycled polystyrene content increased from 15%to 30%.Water absorption and thickness swelling after 24 h immersion in water were improved by 165%and 750%as the recycled polystyrene content increased from 15%to 30%.The magnitude of the improvement in mechanical properties however,was less pronounced than of the physical properties since modulus of rupture,shear strength parallel in the plane of the board and glue line shear strength were increased by 43.6%,50%and 61.5%,respec-tively.The low viscosity of the recycled polystyrene caused more mobility inside the panel matrix and therefore,an improved penetration took place into adequate depth of the compressed dust particles.It is concluded that boards can be successfully produced using these waste raw materials,wood dust and recycled polystyrene in organic solvent as a binder,and therefore it can reduce waste disposal and provide cleaner production for the development of wood-based boards.
文摘Woody biomass is a widely-used and favourable material for energy production due to its carbon neutral status. Energy is generally derived either through direct combustion or gasification. The Irish forestry sector is forecasted to expand significantly in coming years, and so the opportunity exists for the bioenergy sector to take advantage of the material for which there will be no demand from current markets. A by-product of wood processing, wood dust is the cheapest form of wood material available to the bioenergy sector. Currently wood dust is primarily processed into wood pellets for energy generation. Research was conducted on post-processing birch wood dust;the calorific value and the Wobbe Index were determined for a number of wood particle sizes and wood dust concentrations. The Wobbe Index determined for the upper explosive concentration (4000 g/m3) falls within range of that of hydrogen gas, and wood dust-air mixtures of this concentration could therefore behave in a similar manner in a gas turbine. Due to its slightly lower HHV and higher particle density, however, alterations to the gas turbine would be necessary to accommodate wood dust to prevent abrasive damage to the turbine. As an unwanted by-product of wood processing the direct use of wood dust in a gas turbine for energy generation could therefore have economic and environmental benefits.
文摘An experimental study was carried out on bricks using local materials in order to take into account the waste wood management to protect the environment and to reduce the cost of the habitat. Chips and sawdust were built-in clay bricks in order to study their influence on the compressive strength, Young’s modulus and the speed for soundproofing. Testings in compressive strength were made on the parallelepiped clay bricks, stabilized with different percentages of cement, with incorporation to various percentages of sawdust or wood chips (Mahogany), using a universal press. Young’s modulus was measured from the speed of sound by the ultrasonic method. The results obtained show that the incorporation of mahogany tree chips in the stabilized brick at 8% of cement, does not have much effect on the compressive strength. It was found that the incorporation of chips or sawdust on the clay brick, does not improve the compressive strength. The Young’s modulus decreases with increasing content of sawdust and practically remains constant regardless of the content of chips at 4% and 6% of cement. The clay brick mixed with 8% of mahogany sawdust can be an acoustic barrier.