This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis...Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment...We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.展开更多
We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as ...We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %.展开更多
Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared...Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection.展开更多
Birch has long suffered from a lack of active forest management,leading many researchers to use mate-rial without a detailed management history.Data collected from three birch(Betula pendula Roth,B.pubescens Ehrh.)sit...Birch has long suffered from a lack of active forest management,leading many researchers to use mate-rial without a detailed management history.Data collected from three birch(Betula pendula Roth,B.pubescens Ehrh.)sites in southern Sweden were analyzed using regression analysis to detect any trends or differences in wood proper-ties that could be explained by stand history,tree age and stem form.All sites were genetics trials established in the same way.Estimates of acoustic velocity(AV)from non-destructive testing(NDT)and predicted AV had a higher correlation if data was pooled across sites and other stem form factors were considered.A subsample of stems had radial profiles of X-ray wood density and ring width by year created,and wood density was related to ring number from the pith and ring width.It seemed likely that wood density was negatively related to ring width for both birch species.Linear models had slight improvements if site and species were included,but only the youngest site with trees at age 15 had both birch species.This paper indicated that NDT values need to be considered separately,and any predictive models will likely be improved if they are specific to the site and birch species measured.展开更多
Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory whic...Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory which are suitable for the binary processing of the wood anatomical structure image. After the wood image has been processed binary, with the help of computer vision technology, the boundary of wood anatomical structure molecular binary image was sought This kind of theory and method lay a solid foundaion on the collection of feature and the pottern recognition and other high level processing of wood anatomical structure molecular image.展开更多
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
The muon radiography imaging technique for high-atomic-number objects(Z)and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation det...The muon radiography imaging technique for high-atomic-number objects(Z)and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation detection imaging.However,few imaging studies have been reported on low and medium Z objects at the centimeter scale.This paper presents an imaging system that consists of three layers of a position-sensitive detector and four plastic scintillation detectors.It acquires data by coincidence detection technique of cosmic-ray muon and its secondary particles.A 3D imaging algorithm based on the density of the coinciding muon trajectory was developed,and 4D imaging that takes the atomic number dimension into account by considering the secondary particle ratio information was achieved.The resultant reconstructed 3D images could distinguish between a series of cubes with 5-mm-side lengths and 2-mm-intervals.If the imaging time is more than 20 days,this method can distinguish intervals with a width of 1 mm.The 4D images can specify target objects with low,medium,and high Z values.展开更多
Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent ye...Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.展开更多
Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destr...Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destructive testing specifically. This paper presents a proposed method for the automatic detection of weld defects in radiographic images. Firstly, the radiographic images were enhanced using adaptive histogram equalization and are filtered using mean and wiener filters. Secondly, the welding area is selected from the radiography image. Thirdly, the Cepstral features are extracted from the Higher-Order Spectra (Bispectrum and Trispectrum). Finally, neural networks are used for feature matching. The proposed method is tested using 100 radiographic images in the presence of noise and image blurring. Results show that in spite of time consumption, the proposed method yields best results for the automatic detection of weld defects in radiography images when the features were extracted from the Trispectrum of the image.展开更多
Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face...Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face backgrounds which hinder their effectiveness in moni-toring.To address these challenges,based on the analysis and optimization of UAV remote sensing images,this study developed a spatio-temporal multi-scale fusion algorithm for disease detection.The multi-head,self-attention mechanism is incorporated to address the issue of excessive features generated by complex surface backgrounds in UAV images.This enables adaptive feature control to suppress redundant information and boost the model’s feature extraction capa-bilities.The SPD-Conv module was introduced to address the problem of loss of small target feature information dur-ing feature extraction,enhancing the preservation of key features.Additionally,the gather-and-distribute mechanism was implemented to augment the model’s multi-scale feature fusion capacity,preventing the loss of local details during fusion and enriching small target feature information.This study established a dataset of pine wood nematode disease in the Huangshan area using DJI(DJ-Innovations)UAVs.The results show that the accuracy of the proposed model with spatio-temporal multi-scale fusion reached 78.5%,6.6%higher than that of the benchmark model.Building upon the timeliness and flexibility of UAV remote sensing,the pro-posed model effectively addressed the challenges of detect-ing small and medium-size targets in complex backgrounds,thereby enhancing the detection efficiency for pine wood nematode disease.This facilitates early preemptive preser-vation of diseased trees,augments the overall monitoring proficiency of pine wood nematode diseases,and supplies technical aid for proficient monitoring.展开更多
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
基金supported by the scientific and technological key project in Henan Province (No.212102210148)Open fund of Key Laboratory of Grain Information Processing and Control (No.KFJJ-2018-101)
文摘Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
文摘We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.
基金financially supported by the Fund of Forestry 948 Project(2011-4-04)the Fundamental Research Funds for the Central Universities(DL13CB02,DL13BB21)the Natural Science Foundation of Heilongjiang Province(C201415)
文摘We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %.
基金funded by Natural Science Foundation of Heilongjiang Province(TD2020C001)National Forestry Science and Technology Promotion Project(2019[10])。
文摘Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection.
基金financed by the research program FRAS-The Future Silviculture in Southern Sweden
文摘Birch has long suffered from a lack of active forest management,leading many researchers to use mate-rial without a detailed management history.Data collected from three birch(Betula pendula Roth,B.pubescens Ehrh.)sites in southern Sweden were analyzed using regression analysis to detect any trends or differences in wood proper-ties that could be explained by stand history,tree age and stem form.All sites were genetics trials established in the same way.Estimates of acoustic velocity(AV)from non-destructive testing(NDT)and predicted AV had a higher correlation if data was pooled across sites and other stem form factors were considered.A subsample of stems had radial profiles of X-ray wood density and ring width by year created,and wood density was related to ring number from the pith and ring width.It seemed likely that wood density was negatively related to ring width for both birch species.Linear models had slight improvements if site and species were included,but only the youngest site with trees at age 15 had both birch species.This paper indicated that NDT values need to be considered separately,and any predictive models will likely be improved if they are specific to the site and birch species measured.
文摘Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory which are suitable for the binary processing of the wood anatomical structure image. After the wood image has been processed binary, with the help of computer vision technology, the boundary of wood anatomical structure molecular binary image was sought This kind of theory and method lay a solid foundaion on the collection of feature and the pottern recognition and other high level processing of wood anatomical structure molecular image.
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
基金supported by the Ministry of Science and Technology of China Foundation(No.2020YFE0202001)the National Natural Science Foundation of China(No.11875163)the Natural Science Foundation of Hunan Province(No.2021JJ20006).
文摘The muon radiography imaging technique for high-atomic-number objects(Z)and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation detection imaging.However,few imaging studies have been reported on low and medium Z objects at the centimeter scale.This paper presents an imaging system that consists of three layers of a position-sensitive detector and four plastic scintillation detectors.It acquires data by coincidence detection technique of cosmic-ray muon and its secondary particles.A 3D imaging algorithm based on the density of the coinciding muon trajectory was developed,and 4D imaging that takes the atomic number dimension into account by considering the secondary particle ratio information was achieved.The resultant reconstructed 3D images could distinguish between a series of cubes with 5-mm-side lengths and 2-mm-intervals.If the imaging time is more than 20 days,this method can distinguish intervals with a width of 1 mm.The 4D images can specify target objects with low,medium,and high Z values.
基金Supported by Downhole Intelligent Measurement and Control Science and Technology Innovation Team of Southwest Petroleum University(Grant No.2018CXTD04)National Natural Science Foundation of China(Grant Nos.61701085,51974273)+1 种基金Chengdu Municipal international science and technology cooperation project of China(Grant Nos.2020-GH02-00016-HZ)2020 National Mountain Highway Engineering Technology Research Center Open Fund Project(Grant No.GSGZJ-2020-01).
文摘Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.
文摘Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destructive testing specifically. This paper presents a proposed method for the automatic detection of weld defects in radiographic images. Firstly, the radiographic images were enhanced using adaptive histogram equalization and are filtered using mean and wiener filters. Secondly, the welding area is selected from the radiography image. Thirdly, the Cepstral features are extracted from the Higher-Order Spectra (Bispectrum and Trispectrum). Finally, neural networks are used for feature matching. The proposed method is tested using 100 radiographic images in the presence of noise and image blurring. Results show that in spite of time consumption, the proposed method yields best results for the automatic detection of weld defects in radiography images when the features were extracted from the Trispectrum of the image.
基金funded by The National Natural Science Foundation of China(32271865)The Fundamental Research Funds for Central Universities(2572023CT16)the Fundamental Research Funds for Natural Science Foundation of Heilongjiang for Distinguished Young Scientists(JQ2023F002).
文摘Pine wood nematode infection is a devastating disease.Unmanned aerial vehicle(UAV)remote sensing enables timely and precise monitoring.However,UAV aerial images are challenged by small target size and complex sur-face backgrounds which hinder their effectiveness in moni-toring.To address these challenges,based on the analysis and optimization of UAV remote sensing images,this study developed a spatio-temporal multi-scale fusion algorithm for disease detection.The multi-head,self-attention mechanism is incorporated to address the issue of excessive features generated by complex surface backgrounds in UAV images.This enables adaptive feature control to suppress redundant information and boost the model’s feature extraction capa-bilities.The SPD-Conv module was introduced to address the problem of loss of small target feature information dur-ing feature extraction,enhancing the preservation of key features.Additionally,the gather-and-distribute mechanism was implemented to augment the model’s multi-scale feature fusion capacity,preventing the loss of local details during fusion and enriching small target feature information.This study established a dataset of pine wood nematode disease in the Huangshan area using DJI(DJ-Innovations)UAVs.The results show that the accuracy of the proposed model with spatio-temporal multi-scale fusion reached 78.5%,6.6%higher than that of the benchmark model.Building upon the timeliness and flexibility of UAV remote sensing,the pro-posed model effectively addressed the challenges of detect-ing small and medium-size targets in complex backgrounds,thereby enhancing the detection efficiency for pine wood nematode disease.This facilitates early preemptive preser-vation of diseased trees,augments the overall monitoring proficiency of pine wood nematode diseases,and supplies technical aid for proficient monitoring.