We assessed growth traits and wood properties ofDH32-29, a clone of Eucalyptus urophylla x E. grandis, at age of two to six years in Guangdong in China. Analysis of variance of studied traits showed that there were si...We assessed growth traits and wood properties ofDH32-29, a clone of Eucalyptus urophylla x E. grandis, at age of two to six years in Guangdong in China. Analysis of variance of studied traits showed that there were significant differences (1% level) on all studied traits among ages except for wood basic density. Analysis of age trends of growth traits and wood properties revealed that rotation length of DH32-29 should be more than six years or longer. Phenotypic correlations among traits at individual ages indicated that correlations between growth traits were strongly positive. There was significant change in relationship between growth and wood basic density with increasing age, ranging from -0.03 to -0.54 at 2 and 5 year and 0.003 to 0.3 at 3, 4 and 6 year. Correlations between Pilodyn pin penetration and basic density measured on increment cores showed that Pilodyn could rank or group genotypes or sites into density classes, but failure to predict individual tree and individual clone.展开更多
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar c...For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.展开更多
With the increase of wood and wood products demands in the world, non-destructive evaluation techniques of wood are more and more important. This article clarifies the importance and present situation of non-destructi...With the increase of wood and wood products demands in the world, non-destructive evaluation techniques of wood are more and more important. This article clarifies the importance and present situation of non-destructive evaluation and introduces some instruments about non-destructive evaluation, and some advice and ideas are put forward.展开更多
The volatiles release behavior of poplar powder has been studied by TD-GC/MS online technique at different temperatures.The results show that the proportion of main harmful components was higher than that of beneficia...The volatiles release behavior of poplar powder has been studied by TD-GC/MS online technique at different temperatures.The results show that the proportion of main harmful components was higher than that of beneficial in the volatiles of poplar powder at 40℃ and 90℃,the harmful components was 1.7 times higher than beneficial components. The proportions of main beneficial and harmful components were equivalent at 60℃,while the main beneficial components was 5.42 times higher than that of harmful.Taking poplar wood powder as substrate to prepare wood powder-based composites by high-pressure no-gel molding compaction between the temperature of lignin softening point and wood materials carbonization(about 150-180℃) can present a satisfactory environmental friendliness.展开更多
The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to it...The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.展开更多
This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique ta...This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment.展开更多
Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial app...Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings.展开更多
A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil.It is fre-quently observed in an eddy current(EC)array probe.In this work,a tilted non-coaxial driver-pickup ...A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil.It is fre-quently observed in an eddy current(EC)array probe.In this work,a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evalua-tion.Basically,the core of the formulation is to obtain the projection of magnetic vector potential(MVP)from the driver coil onto the vector along the tilted pickup coil,which is divided into two key steps.The first step is to make a projection of MVP along the pickup coil onto a horizontal plane,and the second one is to build the relationship between the pr,ojected MVP and the MVP along the driver coil.Afterwards,an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields.The calculated values from the resulting model indicate good agreement with those from the finite element model(FEM)and experiments,which validates the developed analytical model.展开更多
High frequency ultrasonic nondestructive testing was conducted using a direct contact method for SUS306 stainless steel treated by high temperature and fracture tensile tests. Reflected ultrasonic echoes were analyzed...High frequency ultrasonic nondestructive testing was conducted using a direct contact method for SUS306 stainless steel treated by high temperature and fracture tensile tests. Reflected ultrasonic echoes were analyzed. The relationships between the ultrasonic attenuation coefficient, strength of backscattering wave and the elongation at break of the samples were obtained. The damages were evaluated by using these results together with the analysis of microstructure and mechanics of the tested material.展开更多
基金This study was undertaken as a project for National Key Technology R&D Program for the 12th Five-year Plan(China) "Breeding and Selection of New Variety with High Yield and High Resistance of Eucalyptus"(2012BAD01B04-1)Special Fund for Forestry Industry Research in the Public Interest "Project of Veneer Variety Breeding and Cultivation Model Optimization for Eucalyptus"(201104003-07)
文摘We assessed growth traits and wood properties ofDH32-29, a clone of Eucalyptus urophylla x E. grandis, at age of two to six years in Guangdong in China. Analysis of variance of studied traits showed that there were significant differences (1% level) on all studied traits among ages except for wood basic density. Analysis of age trends of growth traits and wood properties revealed that rotation length of DH32-29 should be more than six years or longer. Phenotypic correlations among traits at individual ages indicated that correlations between growth traits were strongly positive. There was significant change in relationship between growth and wood basic density with increasing age, ranging from -0.03 to -0.54 at 2 and 5 year and 0.003 to 0.3 at 3, 4 and 6 year. Correlations between Pilodyn pin penetration and basic density measured on increment cores showed that Pilodyn could rank or group genotypes or sites into density classes, but failure to predict individual tree and individual clone.
基金supported by the Central University Basic Research Professional Expenses Special Foundation of Harbin Engineering University (Grant No. HEUCFL10101109)
文摘For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.
文摘With the increase of wood and wood products demands in the world, non-destructive evaluation techniques of wood are more and more important. This article clarifies the importance and present situation of non-destructive evaluation and introduces some instruments about non-destructive evaluation, and some advice and ideas are put forward.
文摘The volatiles release behavior of poplar powder has been studied by TD-GC/MS online technique at different temperatures.The results show that the proportion of main harmful components was higher than that of beneficial in the volatiles of poplar powder at 40℃ and 90℃,the harmful components was 1.7 times higher than beneficial components. The proportions of main beneficial and harmful components were equivalent at 60℃,while the main beneficial components was 5.42 times higher than that of harmful.Taking poplar wood powder as substrate to prepare wood powder-based composites by high-pressure no-gel molding compaction between the temperature of lignin softening point and wood materials carbonization(about 150-180℃) can present a satisfactory environmental friendliness.
基金National Natural Science Foundation of China(Grant Nos.52275096,52005108,52275523)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone High-end Equipment Vibration and Noise Detection and Fault Diagnosis Collaborative Innovation Platform ProjectFujian Provincial Major Research Project(Grant No.2022HZ024005)。
文摘The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.
文摘This paper presents an air-coupled impact echo(IE)technique that relies on the phase spectrum of the collected data to find the frequencies corresponding to the reflections from delaminations.The proposed technique takes advantage of the fact that the IE compression wave is not a propagating wave,but it is the 1st order symmetrical(S1)mode Lamb wave at zero group velocity(S1-ZGV).Therefore,it searches the phase spectra of the data collected by multiple sensors to locate the frequency corresponding to the lowest phase difference.As a result,the technique reduces the effect of propagating waves,including the direct acoustic wave and ambient noise.It is named the Constant Phase IE(CPIE).The performance of the CPIE is experimentally compared with the regular amplitude spectrum-based IE technique and two other multisensor IE techniques.The CPIE shows a performance advantage,especially in a noisy environment.
基金S.-L.Chen acknowledges funding from the National Natural Science Foundation of China,No.61775134C.Tian acknowledges funding from the National Natural Science Foundation of China,No.61705216the Anhui Science and Technology Department,No.18030801138.
文摘Photoacoustic(PA)imaging has been widely used in biomedical research and preclinical studies during the past two decades.It has also been explored for nondestructive testing and evaluation(NDT/E)and for industrial applications.This paper describes the basic principles of PA technology for NDT/E and its applications in recent years.PA technology for NDT/E includes the use of a modulated continuous-wave laser and a pulsed laser for PA wave excitation,PA-generated ultrasonic waves,and all-optical PA wave excitation and detection.PA technology for NDT/E has demonstrated broad applications,including the imaging of railway cracks and defects,the imaging of Li metal batteries,the measurements of the porosity and Young’s modulus,the detection of defects and damage in silicon wafers,and a visualization of underdrawings in paintings.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701500,51677187,and 51465024)
文摘A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil.It is fre-quently observed in an eddy current(EC)array probe.In this work,a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evalua-tion.Basically,the core of the formulation is to obtain the projection of magnetic vector potential(MVP)from the driver coil onto the vector along the tilted pickup coil,which is divided into two key steps.The first step is to make a projection of MVP along the pickup coil onto a horizontal plane,and the second one is to build the relationship between the pr,ojected MVP and the MVP along the driver coil.Afterwards,an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields.The calculated values from the resulting model indicate good agreement with those from the finite element model(FEM)and experiments,which validates the developed analytical model.
基金supported by the National Natural Science Foundation of China (Grant No.60472102)the Innovative Program of Shanghai Municipal Education Commission (Grant No.07ZZ03)
文摘High frequency ultrasonic nondestructive testing was conducted using a direct contact method for SUS306 stainless steel treated by high temperature and fracture tensile tests. Reflected ultrasonic echoes were analyzed. The relationships between the ultrasonic attenuation coefficient, strength of backscattering wave and the elongation at break of the samples were obtained. The damages were evaluated by using these results together with the analysis of microstructure and mechanics of the tested material.