期刊文献+
共找到1,063篇文章
< 1 2 54 >
每页显示 20 50 100
3D modeling for effect of tool eccentricity on coupled thermal and material flow characteristics during friction stir welding
1
作者 Hao SU Ji CHEN Chuan-song WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3309-3325,共17页
A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical bound... A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one. 展开更多
关键词 friction stir welding tool eccentricity thermal behavior periodic material flow numerical simulation
下载PDF
Effect of tool geometry on ultraprecision machining of soft-brittle materials:a comprehensive review 被引量:3
2
作者 Weihai Huang Jiwang Yan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期60-98,共39页
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int... Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided. 展开更多
关键词 ultraprecision machining soft-brittle materials ductile machining tool geometries material removal mechanisms surface integrity
下载PDF
DIFFUSION COUPLE BETWEEN HIGHSTRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS 被引量:14
3
作者 Li, Yuanyuan Zhang, Datung +2 位作者 Ngai Tungwai, Leo Xia, Wei Long, Yan 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期8-10,10+12+9+11,共5页
INTRODUCTIONAluminumbronzeisanimportantengineeringmaterial.Itsexcelentphysical,mechanical,anticorosionandw... INTRODUCTIONAluminumbronzeisanimportantengineeringmaterial.Itsexcelentphysical,mechanical,anticorosionandwearresistingprop... 展开更多
关键词 WEAR resistance ALUMINUM BRONZE tool materialS DIFFUSION
下载PDF
DESIGN AND PROPERTIES OF A FUNCTIONALLY GRADIENT CERAMIC TOOL MATERIAL 被引量:14
4
作者 J. Zhao,X. Ai, J.H. Zhang, J.X. Deng and C.Z. Huang Department of Mechanical Engineering, Shandong University of Technology, Jinan 250061,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期1054-1058,共5页
Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presente... Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presented, by which a Al 2O 3/(W,Ti)C ceramic tool material FG 2 was developed. Multi objective optimization method was employed in designing the compositional distribution of this ceramic tool material. The results of both continuous and intermittent cutting tests are indicative of the much better cutting behavior of the functionally gradient ceramic tool FG 2 than that of the common ceramic tool SG 4. 展开更多
关键词 functionally gradient materials materials design compositional distribution ceramic tool
下载PDF
Synergistically Toughening Effect of SiC Whiskers and Nanoparticles in Al_2O_3-based Composite Ceramic Cutting Tool Material 被引量:4
5
作者 LIU Xuefei LIU Hanlian +3 位作者 HUANG Chuanzhen WANG Limei ZOU Bin ZHAO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期977-982,共6页
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ... In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool. 展开更多
关键词 Al2O3-based ceramic cutting tool materials SiC whiskers SiC nanoparticles mechanical properties toughening and strengthening mechanisms
下载PDF
Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy 被引量:3
6
作者 Ugender Singarapu Kumar Adepu Somi Reddy Arumalle 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期335-344,共10页
In this investigation,the effect of friction stir welding(FSW)parameters such as tool material rotational speed,and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magnesiu... In this investigation,the effect of friction stir welding(FSW)parameters such as tool material rotational speed,and welding speed on the mechanical properties of tensile strength,hardness and impact energy of magnesium alloy AZ31B was studied.The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters.Statistical optimization technique,ANOVA,was used to determine the optimum levels and to find the significance of each process parameter.The results indicate that rotational speed(RS)and traverse speed(TS)are the most significant factors,followed by tool material(TM),in deciding the mechanical properties of friction stir processed magnesium alloy.In addition,mathematical models were developed to establish relationship between different process variables and mechanical properties. 展开更多
关键词 Friction stir welding tool material Mechanical properties Taguchi orthogonal array Analysis of variance(ANOVA)
下载PDF
X38CrMoV5 hot-work tool steel as tool material for thixoforging of steel:Numerical and experimental evaluation 被引量:1
7
作者 A.RASSILI J.C.PIERRET +3 位作者 G.VANEETVELD J.H ALLEUX G.WALMAG J.LECOMTE-BECKERS 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期713-718,共6页
Although thixoforming of low melting point alloys as aluminum or magnesium is now an industrial reality,thixoforming of high melting point alloys as steel is still at the research level.High working temperature,die we... Although thixoforming of low melting point alloys as aluminum or magnesium is now an industrial reality,thixoforming of high melting point alloys as steel is still at the research level.High working temperature,die wearing and production rate are problems that must be solved and are under investigation.The aim of this work is to evaluate the thermal and mechanical loadings applied to the tools during the steel thixoforging process in order to determine whether classical hot-work tool steel can be an appropriate tool material.This evaluation has been realized thanks to experimental trials and to simulations on the finite elements code Forge2008.The effect of the loadings on the tool's failure modes are highlighted and compared with the ones observed in classical hot forging.Beyond this,the failure modes of hot-work tool steel,the X38CrMoV5 or H11,were presented. 展开更多
关键词 THIXOFORGING steel high MELTING POINT tool material
下载PDF
Strengthening and Toughening Effect of Yttrium on Al_(2)O_(3)/TiCN Ceramic Tool Material 被引量:1
8
作者 许崇海 艾兴 +1 位作者 黄传真 邓建新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期73-76,共4页
The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurit... The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the AL2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties. 展开更多
关键词 rare earths YTTRIUM ceramic tool material strengthening and toughening
下载PDF
Effects of Rare Earth Elements on Wear Resistance of Ceramic Tool Materials 被引量:1
9
作者 许崇海 杨晓蓉 冯林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期485-488,共4页
Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resist... Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resistance of the composite. Under the present experimental conditions, the flank wear curves of the selected ceramic tool materials when machining the hardened tool steel obeyed the wear law well. But wear resistance of different ceramic materials varied with each other. Wear resistance of rare earth ceramic tool materials was higher than that of the corresponding materials without rare earth. Wear modes of the developed Al2O3/(W, Ti)C series rare earth ceramic tool materials were mainly flank wear and accompanied with slight crater wear. 展开更多
关键词 ceramic tool material wear resistance rare earths
下载PDF
In-situ Fabricated TiB_2 Particle-whisker Synergistically Toughened Ti(C,N)-based Ceramic Cutting Tool Material 被引量:4
10
作者 LIU Hanlian SHI Qiang +3 位作者 HUANG Chuanzhen ZOU Bin XU Liang WANG Jun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期338-342,共5页
The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of h... The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials. 展开更多
关键词 in-situ synthesis technology TiB_ whisker toughening mechanism Ti(C N)-TiB_ composite tool material
下载PDF
Experimental Study on Material Surface Modification of Tool Steel
11
作者 沈丽如 童洪辉 +2 位作者 王珂 铁军 孙爱萍 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第1期1141-1146,共6页
This paper presents the surface temperature behavior of M42 high-speed tool steel samples during N+ implantation in an industrialized GLZ-100 metal-ion implantation machine. A detail study has been made on the paramet... This paper presents the surface temperature behavior of M42 high-speed tool steel samples during N+ implantation in an industrialized GLZ-100 metal-ion implantation machine. A detail study has been made on the parameters of N+ implantation. Optimized technical parameters have been presented. The microhardness of the sample surface implanted under these parameters has been increased by a factor of 2.3, and the wear-resistance has been improved by about 5.4 times. The research on the mechanism of surface modification of M42 steel by nitrogen ion implantation has also been made. 展开更多
关键词 Experimental Study on material Surface Modification of tool Steel HIGH
下载PDF
Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel 被引量:6
12
作者 Jun Yao Xuan-hui Qu Xin-bo He Lin Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第7期608-614,共7页
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was show... The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics. 展开更多
关键词 powder metallurgy tool steel fatigue of materials strength of materials failure modes INCLUSIONS FRACTOGRAPHY
下载PDF
Relationship Between Thermal Shock Behavior and Cutting Performance of a Functionally Gradient Ceramic Tool 被引量:6
13
作者 ZHAO Jun, AI Xing, HUANG Xin-ping (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期61-62,共2页
Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in th... Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in this paper, according to which an Al 2O 3-TiC functionally gradient ceramic tool material FG-1 was synthesized by powder-laminating and uniaxially hot-pressing technique. The thermal shock resistance of the Al 2O 3-TiC functionally gradient ceramics FG-1 was evaluated by water quenching and subsequent three-point bending tests of flexural strength diminution. Comparisons were made with results from parallel experiments conducted using a homogeneous Al 2O 3-TiC ceramics. Functionally gradient ceramics exhibited higher retained strength under all thermal shock temperature differences compared to homogeneous ceramics, indicating the higher thermal shock resistance. The experimental results were supported by the calculation of transient thermal stress field. The cutting performance of the Al 2O 3-TiC functionally gradient ceramic tool FG-1 was also investigated in rough turning the cylindrical surface of exhaust valve of diesel engine in comparison with that of a common Al 2O 3-TiC ceramic tool LT55. The results indicated that the tool life of FG-1 increased by 50 percent over that of LT55. Tool life of LT55 was mainly controlled by thermal shock cracking which was accompanied by mechanical shock. While tool life of FG-1 was mainly controlled by mechanical fatigue crack extension rather than thermal shock cracking, revealing the less thermal shock susceptibility of functionally gradient ceramics than that of common ceramics. 展开更多
关键词 functionally gradient materials ceramic tool materials thermal shock resistance transient thermal stress cutting performance
下载PDF
Effects of Cutting Parameters on Tool Insert Wear in End Milling of Titanium Alloy Ti6A14V 被引量:4
14
作者 LUO Ming WANG Jing +1 位作者 WU Baohai ZHANG Dinghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期53-59,共7页
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The in... Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production. 展开更多
关键词 tool wear TI6A14V cutting parameter hard-to-cut material
下载PDF
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
15
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase Ceramic tool material Mechanical properties Cutting performance
下载PDF
Recent Advances in Drilling Tool Temperature:A State‑of‑the‑Art Review 被引量:1
16
作者 Zhaoju Zhu Xinhui Sun +2 位作者 Kai Guo Jie Sun Jianfeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期23-62,共40页
Drilling is regarded as the most complex manufacturing process compared with other conventional machining processes.During the drilling process,most of the energy consumed in metal cutting is converted to heat and inc... Drilling is regarded as the most complex manufacturing process compared with other conventional machining processes.During the drilling process,most of the energy consumed in metal cutting is converted to heat and increases temperature considerably.The resulting thermal phenomena are important since they influence the mode of deformation,the final metallurgical state of the machined surface,and the rate of tool wear.Hence,understanding the temperature characteristics in the drilling process is crucial for enhancing the drill performance and process efficiency.Extensive efforts have been conducted to measure and control the drilling tool temperature successively.However,very few studies have been conducted from a comprehensive perspective to review all the efforts.To address this gap in the literature,a rigorous review concerning the state-of-the-art results and advances in drilling tool temperature is presented in this paper by referring to the wide comparisons among literature analyses.The multiple aspects of drilling tool temperature are precisely detailed and discussed in terms of theoretical analysis and thermal modeling,methods for temperature measuring,the effect of cutting parameters,tool geometries and hole-making methods on temperature and temperature controlling by different cooling methods.In conclusion,several possible future research directions are discussed to offer potential insights for the drilling community and future researchers. 展开更多
关键词 DRILLING tool temperature Advance materials Cutting characteristics
下载PDF
Microstructure and wear properties of YT758/CuZnNi hardfacing materials 被引量:1
17
作者 王新洪 张敏 +1 位作者 邹增大 曲仕尧 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第4期800-806,共7页
Hardfacing materials containing YT758 hardmetal particles cemented by Cu-based alloy was deposited on the substrate to produce milling tools by oxy-acetylene flame process. Microstructure and wear properties of the ha... Hardfacing materials containing YT758 hardmetal particles cemented by Cu-based alloy was deposited on the substrate to produce milling tools by oxy-acetylene flame process. Microstructure and wear properties of the hardfacing layers were analyzed by scanning electron microscopy(SEM) and electron dispersion X-ray spectroscopy(EDXS) and wear test. The results show that inter-diffusion zone is found at the interface of YT758/CuZnNi, which promises to improve the bonding strength of YT758/CuZnNi. The wear resistance of YT758/CuZnNi hardfacing layers is higher than that of YG8/CuZnNi hardfacing layers. The working efficiency of the milling tools strengthened by YT758/CuZnNi is approximately 23 times higher than that strengthened by YG8/CuZnNi. 展开更多
关键词 CuZnNi合金 YT758 微观结构 磨球
下载PDF
Research on the Cutting Performance of Cubic Boron Nitride Tools
18
作者 ZHENG Xiao-hua 1,2, YU Qi-xun 1, LIN Jing 1, LU Ming 2, PANG Si-qin 1 (1. School of Mechanical Engineering and Automation, Beijing Institute of Technology, Beijing 100081, China 2. School of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期3-4,共2页
There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and m... There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic compound C 3N 4 with the theory of molecule engineering. According to calculation, it can reach or even exceed the hardness of diamond, so material scientists and technique circles draw their attention to it. A high speed steel twist drill coated with C 3N 4 film is applied to the drilling hole process on steel workpiece in cutting tests, the tool life is increased greatly. When the C 3N 4 film is coated on the cemented carbide inserts, the cutting performance is improved, but is not good enough. The data of mechanical performance and cutting tests about this kind of new tool material is given in this paper, it shows that C 3N 4 has a promising future. The anti-wear ability of cutting tool increases sharply after C 3N 4 being coated on HSS tool. Coated HSS drill also has some benefit after being reground. The tool life prolongs after C 3N 4 being coated on cemented carbide inserts, but is not so long as that of C 3N 4 coated HSS tool. When machining PRCM with C 3N 4 thin-film coated cemented carbide tool, the cutting performance is poor and it is much better when machining PRCM with PCBN, PCD compound plates and CVD thick-film coated cutting tool. Some relative aspects need to be deeply discussed and researched, e.g. the existing coating techniques is not good enough and should be improved in the future, the film thickness should be optimized and try to find out the most effective value, the binding force and mutual effect between coated film and substrate need to be studied furtherly, etc. 展开更多
关键词 ultrahard material carbon nitride cutting tools cutting performance
下载PDF
Design and Manufacturing of Ultra-Hard Micro-Milling Tool
19
作者 战忠波 李亮 +2 位作者 何宁 卞荣 赵孟 《Transactions of Tianjin University》 EI CAS 2014年第6期415-421,共7页
Based on the study of existing typical micro-milling tools and the actual demand for micro-milling tools, the P3 design principle and design flow for ultra-hard micro-milling tool were introduced to give basic guidanc... Based on the study of existing typical micro-milling tools and the actual demand for micro-milling tools, the P3 design principle and design flow for ultra-hard micro-milling tool were introduced to give basic guidance for the optimization of micro-milling tools. Then, according to the P3 design flow, the manufacturing process of polycrystalline diamond(PCD) micro-milling tool was proposed, and the PCD micro-milling tool with diameter of 0.5 mm was developed. Finally, the micro-milling test on the slot was carried out to study the milling performance of PCD micromilling tool. 展开更多
关键词 MICRO-MILLING MICRO-MILLING tool ultra-hard material POLYCRYSTALLINE diamond (PCD) finite elementanalysis
下载PDF
Evaluation of Thermal Effect of PCM Wallboards by Coupling Simplified Phase Change Model with Design Tool
20
作者 Alain Guiavarch Denis Bruneau Bruno Peuportier 《Journal of Building Construction and Planning Research》 2014年第1期12-29,共18页
A simplified PCM wallboard model is coupled to an existing design-oriented model of multi-zone buildings. Using a reference model and a basic simulation configuration, the accuracy of the resulting PCM wallboard-build... A simplified PCM wallboard model is coupled to an existing design-oriented model of multi-zone buildings. Using a reference model and a basic simulation configuration, the accuracy of the resulting PCM wallboard-building thermal design tool is evaluated. A new performance indicator, called PCM utilization factor, is then proposed in order to estimate the thermal efficiency of using PCM wallboards in buildings. Using this PCM Utilization factor and a degrees-hours indicator, the ability of the PCM wallboard-building thermal design tool to evaluate the effect of PCM wallboards on heating loads and summer thermal comfort in the early design phase of a project is examined in two real case studies: a family house project and an existing office building. The user-friendliness of this design tool, and the short calculation times it leads to when performing a year-long simulation using a standard office computer, make it a well-adapted tool for sensibility studies or multi-criterion optimization for buildings that contain PCM wallboards. 展开更多
关键词 PHASE CHANGE material WALLBOARD Thermal Model Dynamic Simulation SUMMER COMFORT Design toolS
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部