In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform...In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform lateral load simulated using a gasbag.The investigation involved the performance of light frame wood structure after it experienced the repeated cyclic lateral wind load as well as the performance of the structure under the ultimate lateral load.Then,the study verified that light frame wood structure can resist repeated cyclic wind loads without observable degradation in stiffness during the anticipated serve life,and recommended shear wall percent drift restriction for lateral wind load design of wood structure in serviceability limit states is 1/400 drift,and in ultimate limit states is 1/80 drift.The conclusions of this paper can be benefit for the engineering practice of the light frame wood structures in high wind load regions.展开更多
Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more devel...Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50508012)
文摘In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform lateral load simulated using a gasbag.The investigation involved the performance of light frame wood structure after it experienced the repeated cyclic lateral wind load as well as the performance of the structure under the ultimate lateral load.Then,the study verified that light frame wood structure can resist repeated cyclic wind loads without observable degradation in stiffness during the anticipated serve life,and recommended shear wall percent drift restriction for lateral wind load design of wood structure in serviceability limit states is 1/400 drift,and in ultimate limit states is 1/80 drift.The conclusions of this paper can be benefit for the engineering practice of the light frame wood structures in high wind load regions.
基金This work was supported by the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)333 Talent High-Level Project of Jiangsu Province,and Qinglan Project of Jiangsu Higher Education Institutions.Any research results expressed in this paper are those of the writer(s)and do not necessarily reflect the views of the foundations.
文摘Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls.