In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studie...In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X- ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.展开更多
In this paper,a new resin called Resin M for imparting antifelting properties to wool fabricshas been studied.Resin M may be used by aqueous oxidative/polymer technique.It is provedthat Oxidant A/Resin M treatment can...In this paper,a new resin called Resin M for imparting antifelting properties to wool fabricshas been studied.Resin M may be used by aqueous oxidative/polymer technique.It is provedthat Oxidant A/Resin M treatment can satisfy the machine washable requirement formulated byI.W.S..Resin M is a good agent for antifelting treatment of wool fabrics with proper pretreatment.Oxidant A/Resin M treatment has little influence on dyeing and moisture adsorption properties ofwool fibers.The pilling resistance of the treated fabrics is higher than that of the untreated ones.The strength and the handle of the treated fabrics have little been changed.According to thescanning electron microscope observations,it is recommended that the polymer encapsulation ofindividual fiber also plays an important role in the felting resistance of the treated fabrics though itis well known that the shrink resistance of the treated fabrics is believed to be due to the binding offibers.展开更多
Scouring of raw wool is a chemical treatment that needs a high amount of detergents, alkalis and water. Effluents produced by this treatment are extremely polluted with chemicals and impurities washed out from the fib...Scouring of raw wool is a chemical treatment that needs a high amount of detergents, alkalis and water. Effluents produced by this treatment are extremely polluted with chemicals and impurities washed out from the fibers. It is well known that the ultrasound washing can remove effectively different substances from the textile surfaces even without surfactants due to the cavitations occurring at certain parameters of the ultrasound field. On the other side water treatments of wool combined with mechanical agitation provoked felting which can impair the quality of wool materials. Felting itself depends not only on the parameters of water treatments but also on the structure of wool cuticle. Partial hydrolysis of the cuticle with some proteases can decrease considerably the wool felting. The aim of this work is to study the possibility of applying the ultrasound at the process of raw wool scouring and the influence of proteases on the felting properties of wool at these conditions. It has been found out that ultrasound environment applied does not impair the specific activity of enzyme auxiliaries used and leads to increasing of their effect on the surface of wool fibers. Thus the scouring process studied could be used for developing of a technology producing lower amount and less polluted effluents.展开更多
文摘In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X- ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.
文摘In this paper,a new resin called Resin M for imparting antifelting properties to wool fabricshas been studied.Resin M may be used by aqueous oxidative/polymer technique.It is provedthat Oxidant A/Resin M treatment can satisfy the machine washable requirement formulated byI.W.S..Resin M is a good agent for antifelting treatment of wool fabrics with proper pretreatment.Oxidant A/Resin M treatment has little influence on dyeing and moisture adsorption properties ofwool fibers.The pilling resistance of the treated fabrics is higher than that of the untreated ones.The strength and the handle of the treated fabrics have little been changed.According to thescanning electron microscope observations,it is recommended that the polymer encapsulation ofindividual fiber also plays an important role in the felting resistance of the treated fabrics though itis well known that the shrink resistance of the treated fabrics is believed to be due to the binding offibers.
文摘Scouring of raw wool is a chemical treatment that needs a high amount of detergents, alkalis and water. Effluents produced by this treatment are extremely polluted with chemicals and impurities washed out from the fibers. It is well known that the ultrasound washing can remove effectively different substances from the textile surfaces even without surfactants due to the cavitations occurring at certain parameters of the ultrasound field. On the other side water treatments of wool combined with mechanical agitation provoked felting which can impair the quality of wool materials. Felting itself depends not only on the parameters of water treatments but also on the structure of wool cuticle. Partial hydrolysis of the cuticle with some proteases can decrease considerably the wool felting. The aim of this work is to study the possibility of applying the ultrasound at the process of raw wool scouring and the influence of proteases on the felting properties of wool at these conditions. It has been found out that ultrasound environment applied does not impair the specific activity of enzyme auxiliaries used and leads to increasing of their effect on the surface of wool fibers. Thus the scouring process studied could be used for developing of a technology producing lower amount and less polluted effluents.