In this study,we used citric acid(CA)as a crosslinking agent,mixed with polyhexamethylene biguanide,to perform a pad-dry-cure treatment on wool fabrics to study its antimicrobial effects and physical properties.
The launderability of wool fabrics treated by nano finoshing agent influences directly the functional endurance of he treated wool fabric. In order to investigate the effect of wool fibers surface modification on the ...The launderability of wool fabrics treated by nano finoshing agent influences directly the functional endurance of he treated wool fabric. In order to investigate the effect of wool fibers surface modification on the functional erdurance of nano finishinp wool fibers, in this paper, for the first time wool fibers were chemically modified by using NaClO aqueous and KMnO4 aqueous, and then chemically modified wool fibers and native wool fibers were treated using nano ZnO finishing agent, respectively. The launderability of wool fibers treated by nano finishing agent was investigated. The experimental results show that the chemically modified wool fibers have a good launderaility after being treated by nano ZnO finishing agent treating. The surface morphologies of wool fibers were observed by using SEM. It is got that there is a strong adbesion between nano ZnO and wool surface through XPS analysis.展开更多
Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-pu...Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-purposes of fiber-forming, energy saving, and waste heat recovery, the modifying agents that can improve the acidity coefficient of slag effectively, economically, and environmentally were investigated. Three agents with different acidity coefficients were adopted to modify slag and manufacture wool fibers. The effect of agent and slag proportion on the melting temperature and viscosity of molten slag was studied at a fixed acidity coefficient of 1.8 and 2.0. The results indicate that the sample modified with high acidity coefficient agent and high slag proportion has lower melting temperature and viscosity. The effect of agent and slag temperature on the fiber diameter was also investigated when the acidity coefficient of slag is 2.0. At a fixed slag proportion of 50 wt.%, the mean diameter decreases with increasing temperature and decreasing viscosity coefficient. Besides, the temperature drops caused by the addition of agents and energy consumption of samples for heating the slag were also analyzed.展开更多
文摘In this study,we used citric acid(CA)as a crosslinking agent,mixed with polyhexamethylene biguanide,to perform a pad-dry-cure treatment on wool fabrics to study its antimicrobial effects and physical properties.
文摘The launderability of wool fabrics treated by nano finoshing agent influences directly the functional endurance of he treated wool fabric. In order to investigate the effect of wool fibers surface modification on the functional erdurance of nano finishinp wool fibers, in this paper, for the first time wool fibers were chemically modified by using NaClO aqueous and KMnO4 aqueous, and then chemically modified wool fibers and native wool fibers were treated using nano ZnO finishing agent, respectively. The launderability of wool fibers treated by nano finishing agent was investigated. The experimental results show that the chemically modified wool fibers have a good launderaility after being treated by nano ZnO finishing agent treating. The surface morphologies of wool fibers were observed by using SEM. It is got that there is a strong adbesion between nano ZnO and wool surface through XPS analysis.
基金the National Natural Science Foundation of China(Grant No.51974054)Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJQN202201537)+2 种基金Research Foundation of Chongqing University of Science and Technology(No.ckrc2020017)Natural Science Foundation Project of Chongqing(No.cstc2021jcyj-msxmX0911)Chongqing Science and Technology Commission(No.sl202100000144).
文摘Preparation of high acidity coefficient slag wool fiber with molten slag and modifying agents is considered to be a positive approach for value-added utilization of blast furnace slag. In order to achieve the multi-purposes of fiber-forming, energy saving, and waste heat recovery, the modifying agents that can improve the acidity coefficient of slag effectively, economically, and environmentally were investigated. Three agents with different acidity coefficients were adopted to modify slag and manufacture wool fibers. The effect of agent and slag proportion on the melting temperature and viscosity of molten slag was studied at a fixed acidity coefficient of 1.8 and 2.0. The results indicate that the sample modified with high acidity coefficient agent and high slag proportion has lower melting temperature and viscosity. The effect of agent and slag temperature on the fiber diameter was also investigated when the acidity coefficient of slag is 2.0. At a fixed slag proportion of 50 wt.%, the mean diameter decreases with increasing temperature and decreasing viscosity coefficient. Besides, the temperature drops caused by the addition of agents and energy consumption of samples for heating the slag were also analyzed.