期刊文献+
共找到564篇文章
< 1 2 29 >
每页显示 20 50 100
融入Attention机制改进Word2vec技术的水利水电工程专业词智能提取与分析方法 被引量:21
1
作者 李明超 田丹 +2 位作者 沈扬 Jonathan Shi 韩帅 《水利学报》 EI CSCD 北大核心 2020年第7期816-826,共11页
水利水电工程专业文本信息处理与分析以往主要依赖于人工交互,存在过程繁琐、效率低且易出错等问题。本文基于自然语言处理技术,引入Attention机制对Word2vec技术加以改进,提出了一种智能高效的水利水电工程专业词识别提取与分析方法。... 水利水电工程专业文本信息处理与分析以往主要依赖于人工交互,存在过程繁琐、效率低且易出错等问题。本文基于自然语言处理技术,引入Attention机制对Word2vec技术加以改进,提出了一种智能高效的水利水电工程专业词识别提取与分析方法。该方法通过组合Attention机制,改进Word2vec技术建立了专业词向量计算模型;根据所求词向量,计算词语间相似度,以词语间相似度为组合标准,组合提取水利水电工程专业词;进而结合已有的水利水电工程专业文本,验证所提取专业词的可信度,实现了水利水电工程专业词的自动提炼,构建了一套水利水电工程专业词智能识别提取与分析体系。该方法应用于实际某混凝土大坝长达229周的施工监理周报文本分析中,经过3轮识别计算与分析,获得了9034个水利水电工程专业词,准确率为87.58%,有效提升了水利水电工程专业文本信息提取分析的效率、准确率与智能化水平。 展开更多
关键词 水利水电工程 专业文本 自然语言处理 词向量 word2vec技术 Attention机制 智能提取
下载PDF
基于Word2Vec和决策树的故障定位技术 被引量:1
2
作者 王露露 陈军华 《上海师范大学学报(自然科学版中英文)》 2024年第2期223-227,共5页
利用Word2Vec方法对Java源代码进行深层语义编码,生成文件级和行级的语义向量,并将其用作输入数据来训练决策树模型,以实现精确的文件级别和行级别故障定位,优化故障检测过程,构建一个综合文件级别与行级别分析的高效故障定位框架.实验... 利用Word2Vec方法对Java源代码进行深层语义编码,生成文件级和行级的语义向量,并将其用作输入数据来训练决策树模型,以实现精确的文件级别和行级别故障定位,优化故障检测过程,构建一个综合文件级别与行级别分析的高效故障定位框架.实验结果表明:该模型在各项目中的故障定位准确率均高于83%. 展开更多
关键词 故障定位 语义表示 word2vec 决策树
下载PDF
Word2Vec-KNN技术支持下潮流玩具质量检测模型研究
3
作者 吕远智 《计算机应用文摘》 2024年第10期92-94,共3页
随着人们生活水平的提高,越来越多的消费者更加注重所购产品的质量,特别是在儿童玩具方面。质量不合格的玩具产品会给儿童带来诸多影响,包括但不限于安全隐患及对儿童健康产生的影响。然而,工业制造中的产品质量检测报告种类繁多且不易... 随着人们生活水平的提高,越来越多的消费者更加注重所购产品的质量,特别是在儿童玩具方面。质量不合格的玩具产品会给儿童带来诸多影响,包括但不限于安全隐患及对儿童健康产生的影响。然而,工业制造中的产品质量检测报告种类繁多且不易被理解,无法直观体现产品质量。因此,文章提出了一种基于Word2Vec与K最近邻分类算法相结合的产品质量评估模型。该模型能够通过产品质量报告对某玩具进行评估,从而判断其质量。实验结果表明,在数据集尺寸达到900时,K均值聚类算法模型、局部加权最近邻算法模型和混合模型算法模型的准确率分别为0.84,0.91与0.96,损失函数值分别为0.07,0.05及0.03,证明所提模型能够对玩具产品进行准确评估,从而为消费者和质量监管部门提供一定的决策支持。 展开更多
关键词 产品质量评估 K最近邻 word2vec 大数据
下载PDF
基于Word2Vec和LDA主题模型的中国省级五年规划“文化政策”文本研究 被引量:1
4
作者 高娜 东梅 《网络安全与数据治理》 2024年第7期47-55,共9页
运用Word2Vec和LDA相结合的主题模型分析技术,对我国31个省份三个时期五年规划文本中文化政策部分进行主题识别,从时间和空间两个维度进行“文化政策”主题挖掘和演化分析。研究发现,“文化政策”主题在发展趋势、重点转移、政策导向、... 运用Word2Vec和LDA相结合的主题模型分析技术,对我国31个省份三个时期五年规划文本中文化政策部分进行主题识别,从时间和空间两个维度进行“文化政策”主题挖掘和演化分析。研究发现,“文化政策”主题在发展趋势、重点转移、政策导向、技术应用等方面随时间推移呈现不同演化趋势;四大区域受经济发展水平、文化资源禀赋、政策导向影响,在企业角色强调程度、地区特色旅游发展以及国家级项目和竞争力方面存在地域差异。 展开更多
关键词 LDA主题模型 word2vec 五年规划 文化政策 文本分析
下载PDF
基于LDA和Word2Vec模型的学位论文评阅意见主题挖掘与分析
5
作者 王孟 苏进城 陈志德 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期41-51,共11页
选取某高校部分硕士学位论文评阅意见为研究对象,使用自然语言处理和机器学习技术进行自动化的硕士学位论文评阅意见主题挖掘与分析。首先,采用LDA(latent dirichlet allocation)模型对评阅数据进行主题建模,提取文本中的潜在主题,并将... 选取某高校部分硕士学位论文评阅意见为研究对象,使用自然语言处理和机器学习技术进行自动化的硕士学位论文评阅意见主题挖掘与分析。首先,采用LDA(latent dirichlet allocation)模型对评阅数据进行主题建模,提取文本中的潜在主题,并将评阅意见转化为主题分布向量;其次,结合Word2Vec模型将评阅意见的关键词转化为向量表达;最后,采用TextRank方法提取关键词,以揭示评阅专家的关注核心主题。实验结果表明,所提方法能为高校管理人员提供切实有效的分析工具,有助于他们更好地分析总结评阅意见,同时也为硕士研究生撰写高质量学位论文提供有益借鉴。 展开更多
关键词 硕士学位论文 自然语言处理 LDA模型 word2vec模型 TextRank方法
下载PDF
基于Word2vec与注意力机制的情感分析研究
6
作者 任伟建 徐海杰 +3 位作者 康朝海 霍凤财 任璐 张永丰 《计算机与数字工程》 2024年第10期2991-2995,3147,共6页
针对传统情感分析模型对关键词特征抓取不准确、局部情感特征提取不全面造成分类效果差的问题,提出一种基于TW-BiLSTM-ATT情感分析模型。通过对TF-IDF改进,并与Word2vec结合,使权重特征融入词向量提升对关键信息的抓取能力;将词向量的... 针对传统情感分析模型对关键词特征抓取不准确、局部情感特征提取不全面造成分类效果差的问题,提出一种基于TW-BiLSTM-ATT情感分析模型。通过对TF-IDF改进,并与Word2vec结合,使权重特征融入词向量提升对关键信息的抓取能力;将词向量的位置特征融入到注意力机制中,使模型可以关注到目标词汇附近的词,进而更加全面地将情感特征提取出来。对比实验结果表明TW-BiLSTM-ATT模型在处理情感分析任务中分类效果好于同类模型。 展开更多
关键词 word2vec TF-IDF BiLSTM ATTENTION 情感分析
下载PDF
结合Word2vec和BiLSTM的民航非计划事件分析方法 被引量:1
7
作者 王捷 周迪 +1 位作者 左洪福 黄维 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期917-924,共8页
安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采... 安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。 展开更多
关键词 民航安全 文本分析 非计划事件 word2vec 双向长短期记忆(BiLSTM)神经网络
下载PDF
基于LDA-Word2vec的图书情报领域机器学习研究主题演化与热点主题识别 被引量:7
8
作者 胡泽文 韩雅蓉 王梦雅 《现代情报》 CSSCI 北大核心 2024年第4期154-167,共14页
[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以... [目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。 展开更多
关键词 机器学习 LDA模型 word2vec 主题演化 热点主题 主题影响力 主题关注度
下载PDF
基于LSTM+Word2vec的微博评论情感分析 被引量:1
9
作者 王剑辉 闫芳序 《沈阳师范大学学报(自然科学版)》 CAS 2024年第2期138-144,共7页
微博作为当今热门的社交平台,其中蕴含着许多具有强烈主观性的用户评论文本。为挖掘微博评论文本中潜在的信息,针对传统的情感分析模型中存在的语义缺失以及过度依赖人工标注等问题,提出一种基于LSTM+Word2vec的深度学习情感分析模型。... 微博作为当今热门的社交平台,其中蕴含着许多具有强烈主观性的用户评论文本。为挖掘微博评论文本中潜在的信息,针对传统的情感分析模型中存在的语义缺失以及过度依赖人工标注等问题,提出一种基于LSTM+Word2vec的深度学习情感分析模型。采用Word2vec中的连续词袋模型(continuous bag of words,CBOW),利用语境的上下文结构及语义关系将每个词语映射为向量空间,增强词向量之间的稠密度;采用长短时记忆神经网络模型实现对文本上下文序列的线性抓取,最后输出分类预测的结果。实验结果的准确率可达95.9%,通过对照实验得到情感词典、RNN、SVM三种模型的准确率分别为52.3%、92.7%、85.7%,对比发现基于LSTM+Word2vec的深度学习情感分析模型的准确率更高,具有一定的鲁棒性和泛化性,对用户个性化推送和网络舆情监控具有重要意义。 展开更多
关键词 情感分析 word2vec 长短时记忆神经网络 社交平台 微博
下载PDF
基于K-means与Word2vec的哺乳文胸评论主题挖掘研究
10
作者 刘妍 刘驰 《人类工效学》 2024年第2期40-45,共6页
目的为了了解消费者在网络平台购买哺乳文胸时的关注侧重点,文章从在线评论中抽取有效关键词构建哺乳文胸主题,并通过计算主题的重要程度协助商家了解消费者关注重点方向。方法选用TF-IDF关键词抽取算法,结合K-means和Word2vec进行语义... 目的为了了解消费者在网络平台购买哺乳文胸时的关注侧重点,文章从在线评论中抽取有效关键词构建哺乳文胸主题,并通过计算主题的重要程度协助商家了解消费者关注重点方向。方法选用TF-IDF关键词抽取算法,结合K-means和Word2vec进行语义聚类、主题识别、主题词挖掘及主题重要度计算。结果哺乳文胸评论文本聚类后的主题重要程度排名是:产品品质(45.47%)、产品外观(35.83%)、产品服务(18.79%)。结论通过该方法能够有效的识别和构建哺乳文胸主题及主题词,同时,通过主题的重要程度,能够了解消费者对于网络平台购买哺乳文胸时关注的重点方向,为哺乳内衣企业进行产品改善及生产等提供理论参考。 展开更多
关键词 服装工程 文本聚类分析 哺乳文胸 在线评论 K-MEANS word2vec 主题挖掘 主题重要程度 文献计量分析
下载PDF
关于Word2Vec文本分类效果若干影响因素的分析 被引量:4
11
作者 谢庆恒 《现代信息科技》 2024年第1期125-129,共5页
Word2Vec向量模型参数众多,在不同情景下分类效果不一,分析其影响因素很有必要。从Word2Vec模型基本原理出发,分析讨论了预训练语料、词向量预训练参数以及分类模型参数三大因素对模型分类效果的影响。结果表明限定域预料效果好于广域预... Word2Vec向量模型参数众多,在不同情景下分类效果不一,分析其影响因素很有必要。从Word2Vec模型基本原理出发,分析讨论了预训练语料、词向量预训练参数以及分类模型参数三大因素对模型分类效果的影响。结果表明限定域预料效果好于广域预料;预训练参数中向量维度越大,效果越好,窗口大小存在最优值,分类算法影响不大;分类模型参数中学习率、激活函数、批次大小对模型分类效果影响较大,训练轮次相对较小。 展开更多
关键词 word2vec 文本分类 模型效果 影响因素
下载PDF
基于LDA2Vec-BERT的新兴技术主题多维指标识别与演化分析研究——以颠覆性技术领域:区块链为例
12
作者 胡泽文 王梦雅 韩雅蓉 《现代情报》 CSSCI 北大核心 2024年第9期42-58,共17页
[目的/意义]挖掘并可视化全球性颠覆性技术:区块链领域发明专利文献中隐含的细粒度新兴和热点技术主题及其演化差异,能够为领域从业者、科技政策制定者、管理部门和科技研发人员提供参考和借鉴。[方法/过程]以全球区块链领域的专利文献... [目的/意义]挖掘并可视化全球性颠覆性技术:区块链领域发明专利文献中隐含的细粒度新兴和热点技术主题及其演化差异,能够为领域从业者、科技政策制定者、管理部门和科技研发人员提供参考和借鉴。[方法/过程]以全球区块链领域的专利文献为基础,按时序划分不同的时间切片,综合运用LDA主题模型、Word2vec词向量模型和BERT语言模型构建区块链领域技术主题挖掘模型,同时通过构建识别新兴和热点技术主题的四维指标:主题热度,主题族群,主题技术性和主题新颖度,识别出区块链领域细粒度新兴和热点技术主题,并结合主题演化模型,对新兴和热点技术主题差异进行演化分析。[结果/结论]研究发现,LDA2Vec-BERT主题识别与演化模型能够基于区块链领域海量专利文献标题和摘要识别出领域的新兴技术主题和热点技术主题,并直观清晰展示出区块链领域细粒度技术主题的演化趋势和特征,发现区块链技术形成从构架研究到应用研究的发展趋势。通过模型结果对比可以发现,识别结果科学合理,且模型的精准率、召回率、F1值均高于其他识别模型,证明构建的集成模型能有效识别颠覆性技术领域细粒度新兴和热点主题。 展开更多
关键词 区块链专利 LDA主题模型 word2vec模型 BERT模型 新兴技术主题 热点技术主题 主题识别 主题演化
下载PDF
分类数据的Word2Vec与Jaccard相似度聚类方法的比较分析
13
作者 孙晶 《软件》 2024年第9期49-51,共3页
在实际问题中,使用K-means算法进行聚类的数据点往往有很多特征值,这些特征值大多以文本形式存在,因此如何将大量特征值形成的稀疏数据集进行有效编码,再进行数据点聚类是一个重要的研究方向。本文提出了一种优化思路:将贝叶斯优化应用... 在实际问题中,使用K-means算法进行聚类的数据点往往有很多特征值,这些特征值大多以文本形式存在,因此如何将大量特征值形成的稀疏数据集进行有效编码,再进行数据点聚类是一个重要的研究方向。本文提出了一种优化思路:将贝叶斯优化应用于Word2Vec和K-means聚类算法的参数调优过程,通过多次迭代寻找最优参数解。通过计算分析,并与基于独热编码的Jaccard相似度计算方法实现的聚类算法结果进行比较,证明本文提出的优化改进思路聚类效果更好,准确率更高。 展开更多
关键词 K-MEANS算法 贝叶斯优化 word2vec模型 独热编码 Jaccard相似度
下载PDF
基于Word2vec的二语教学“基本形式库”构建方法初探
14
作者 杨苛鑫 庄会彬 杨牧 《国际汉语教学研究》 2024年第3期76-84,共9页
二语教学中,重视表达取向的“基本形式”观致力于构建一个“基本形式库”。本文以微博语料库为例,将其中高频词设置为检索词,依据Word2vec训练的词向量进行检索,围绕检索词查找近似词来构成(准)等义组,继而进一步确定该组的“基本形式... 二语教学中,重视表达取向的“基本形式”观致力于构建一个“基本形式库”。本文以微博语料库为例,将其中高频词设置为检索词,依据Word2vec训练的词向量进行检索,围绕检索词查找近似词来构成(准)等义组,继而进一步确定该组的“基本形式”。本文初步提出了一种兼具可操作性和效率性的建设方法,作为人工建设“基本形式库”的辅助工具,并检索出了一部分基本形式(准)等义组作为前人研究的补充,为“基本形式”观理论进一步发展提供工具与思考。 展开更多
关键词 基本形式 word2vec 词向量 (准)等义组
下载PDF
基于Word2Vec模型与RAG框架的医疗检索增强生成算法
15
作者 刘彦宏 崔永瑞 《人工智能与机器人研究》 2024年第3期479-486,共8页
当今通用人工智能(AGI)发展火热,各大语言模型(LLMs)层出不穷。大语言模型的广泛应用大大提高了人们的工作水平和效率,但大语言模型也并非完美的,同样伴随着诸多缺点。如:敏感数据安全性、幻觉性、时效性等。同时对于通用大语言模型来讲... 当今通用人工智能(AGI)发展火热,各大语言模型(LLMs)层出不穷。大语言模型的广泛应用大大提高了人们的工作水平和效率,但大语言模型也并非完美的,同样伴随着诸多缺点。如:敏感数据安全性、幻觉性、时效性等。同时对于通用大语言模型来讲,对于一些专业领域问题的回答并不是很准确,这就需要检索增强生成(RAG)技术的支持。尤其是在智慧医疗领域方面,由于相关数据的缺乏,不能发挥出大语言模型优秀的对话和解决问题的能力。本算法通过使用Jieba分词,Word2Vec模型对文本数据进行词嵌入,计算句子间的向量相似度并做重排序,帮助大语言模型快速筛选出最可靠可信的模型外部的医疗知识数据,再根据编写相关的提示词(Prompt),可以使大语言模型针对医生或患者的问题提供令人满意的答案。Nowadays, general artificial intelligence is developing rapidly, and major language models are emerging one after another. The widespread application of large language models has greatly improved people’s work level and efficiency, but large language models are not perfect and are also accompanied by many shortcomings. Such as: data security, illusion, timeliness, etc. At the same time, for general large language models, the answers to questions in some professional fields are not very accurate, which requires the support of RAG technology. Especially in the field of smart medical care, due to the lack of relevant data, the excellent conversation and problem-solving capabilities of the large language model cannot be brought into play. This algorithm uses Jieba word segmentation and the Word2Vec model to embed text data, calculate the vector similarity between sentences and reorder them, helping the large language model to quickly screen out the most reliable and trustworthy medical knowledge data outside the model, and then write relevant prompts to enable the large language model to provide satisfactory answers to doctors or patients’ questions. 展开更多
关键词 通用人工智能 大语言模型 检索增强生成 Jieba分词 word2vec PROMPT
下载PDF
一种基于Word2vec的敏感内容识别技术 被引量:8
16
作者 金贵涛 石元兵 +2 位作者 魏忠 王雍 刘峻豪 《通信技术》 2019年第11期2750-2756,共7页
随着数据量的爆炸式增长,企业面临数据安全防护的难题,尤其是文本数据的安全防护。传统的精确匹配识别文本中敏感词的方法,因存在相似词而导致遗漏,造成数据泄露。于是,提出了一种基于Word2vec结合人工设定的不同等级敏感词识别技术,从... 随着数据量的爆炸式增长,企业面临数据安全防护的难题,尤其是文本数据的安全防护。传统的精确匹配识别文本中敏感词的方法,因存在相似词而导致遗漏,造成数据泄露。于是,提出了一种基于Word2vec结合人工设定的不同等级敏感词识别技术,从语义层面识别文本中的敏感词,并根据提出的敏感度模型计算文本敏感度,判断文本敏感等级。实验结果表明,与传统方法相比,提出的技术方法能够更准确、全面地识别文本敏感内容,并确定文本敏感等级。 展开更多
关键词 敏感词 TextRank算法 word2vec 文本敏感等级
下载PDF
基于CiteSpace、Word2vec和LDA主题模型的国内技术接受模型领域研究现状和演化分析 被引量:1
17
作者 冯靖 章胜平 +1 位作者 宋志刚 肖镇江 《情报探索》 2023年第11期125-134,共10页
[目的/意义]旨在梳理国内技术接受模型领域研究成果,总结国内学术界在技术接受模型领域研究热点,同时对研究主题的演化进行分析,为技术接受模型后续研究提供借鉴和参考。[方法/过程]采用CiteSpace、Word2vec和LDA主题模型,首先对在知网... [目的/意义]旨在梳理国内技术接受模型领域研究成果,总结国内学术界在技术接受模型领域研究热点,同时对研究主题的演化进行分析,为技术接受模型后续研究提供借鉴和参考。[方法/过程]采用CiteSpace、Word2vec和LDA主题模型,首先对在知网上检索的文章进行清理与信息采集,导出相应的Refworks文件。然后借助于软件CiteSpace,从作者、机构、关键词等方面,对技术接受模型研究进行可视化分析,再通过Word2vec和LDA主题模型对文献摘要进行分析,总结得出技术接受模型研究的热点主题及主题演化。[结果/结论]研究发现,技术接受模型依然是解决新技术的采纳和持续使用的重要方法,但要考虑多因素影响,增强其扩展性和适应性,重视用户体验和情感因素。 展开更多
关键词 技术接受模型 CITESPACE word2vec LDA主题模型 演化分析
下载PDF
基于SVM和Word2vec的微博评论情感识别模型
18
作者 闫芳序 王剑辉 《现代计算机》 2024年第10期60-64,共5页
微博作为高互动性的社媒平台,其中富含大量主观性文本数据。为挖掘评论文本中潜在的信息价值,针对传统方法中存在的语义缺失和过度依赖背景知识等问题,提出一种基于SVM和Word2vec的情感识别模型。通过Word2vec模型中的Skip-gram方法利... 微博作为高互动性的社媒平台,其中富含大量主观性文本数据。为挖掘评论文本中潜在的信息价值,针对传统方法中存在的语义缺失和过度依赖背景知识等问题,提出一种基于SVM和Word2vec的情感识别模型。通过Word2vec模型中的Skip-gram方法利用当前语境的中心词预测上下文结构,将词语映射为词向量,进而转化成向量矩阵,输入至SVM模型进行训练与分类。实验结果表明,模型的准确率为0.943,召回率为0.941,F1值为0.946,具有良好的泛化性。 展开更多
关键词 情感分析 SVM word2vec 微博
下载PDF
基于Word2Vec的我国青少年体质健康研究的可视化分析
19
作者 佘如辰 《文体用品与科技》 2024年第16期90-93,共4页
研究旨在通过对CNKI数据库中2004-2023年的有关“青少年体质健康”的1781篇文献进行文本分析,深入探讨中国青少年体质健康领域的研究状况,从主题聚类、关键影响因素和未来研究趋势等角度出发,以促进青少年体质健康在社会结构中的积极影... 研究旨在通过对CNKI数据库中2004-2023年的有关“青少年体质健康”的1781篇文献进行文本分析,深入探讨中国青少年体质健康领域的研究状况,从主题聚类、关键影响因素和未来研究趋势等角度出发,以促进青少年体质健康在社会结构中的积极影响。研究采用文本分析法,结合Word2Vec算法、TF-IDF权重算法和K-means聚类算法,对文献进行多维度分析。研究发现:青少年体质健康研究主题主要集中在体质健康指标、现状对比与启示、干预策略与健康促进、政策背景与改革以及政府政策指导等方面,反映了对青少年健康的全面关注。 展开更多
关键词 青少年 体质健康 word2vec 可视化
下载PDF
基于word2vec与LDA主题模型的技术相似性可视化研究 被引量:29
20
作者 席笑文 郭颖 +1 位作者 宋欣娜 王瑾 《情报学报》 CSSCI CSCD 北大核心 2021年第9期974-983,共10页
技术相似性是企业、组织或国家进行技术情报分析的重要内容,能为其识别潜在竞争关系和合作伙伴提供准确、有效的信息支持。本文针对传统LDA(latent Dirichlet allocation)主题模型忽略专利文本上下文间语义关联的问题,提出了基于word2ve... 技术相似性是企业、组织或国家进行技术情报分析的重要内容,能为其识别潜在竞争关系和合作伙伴提供准确、有效的信息支持。本文针对传统LDA(latent Dirichlet allocation)主题模型忽略专利文本上下文间语义关联的问题,提出了基于word2vec和LDA主题模型的技术相似性可视化研究方法。首先,基于word2vec模型学习特征词在专利文档集合中的上下文语境信息;其次,基于LDA主题模型构建专利权人-专利-技术主题三层概率分布,并将两者融合生成“词粒度”层面的主题向量、专利文档向量及专利权人向量;再次,利用向量相似性指标计算专利权人间的语义相似度,并在此基础上构建能够直观反映专利权人与技术主题关系的二模网络;最后,以NEDD(nano enabled drug delivery)领域为例进行实证研究,证明了该模型在技术相似性测度分析中具有较好的效果。 展开更多
关键词 word2vec LDA主题模型 技术相似性测度
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部