期刊文献+
共找到1,676篇文章
< 1 2 84 >
每页显示 20 50 100
自然语言处理领域中的词嵌入方法综述 被引量:7
1
作者 曾骏 王子威 +2 位作者 于扬 文俊浩 高旻 《计算机科学与探索》 CSCD 北大核心 2024年第1期24-43,共20页
词嵌入作为自然语言处理任务的第一步,其目的是将输入的自然语言文本转换为模型可以处理的数值向量,即词向量,也称词的分布式表示。词向量作为自然语言处理任务的根基,是完成一切自然语言处理任务的前提。然而,国内外针对词嵌入方法的... 词嵌入作为自然语言处理任务的第一步,其目的是将输入的自然语言文本转换为模型可以处理的数值向量,即词向量,也称词的分布式表示。词向量作为自然语言处理任务的根基,是完成一切自然语言处理任务的前提。然而,国内外针对词嵌入方法的综述文献大多只关注于不同词嵌入方法本身的技术路线,而未能将词嵌入的前置分词方法以及词嵌入方法完整的演变趋势进行分析与概述。以word2vec模型和Transformer模型作为划分点,从生成的词向量是否能够动态地改变其内隐的语义信息来适配输入句子的整体语义这一角度,将词嵌入方法划分为静态词嵌入方法和动态词嵌入方法,并对此展开讨论。同时,针对词嵌入中的分词方法,包括整词切分和子词切分,进行了对比和分析;针对训练词向量所使用的语言模型,从概率语言模型到神经概率语言模型再到如今的深度上下文语言模型的演化,进行了详细列举和阐述;针对预训练语言模型时使用的训练策略进行了总结和探讨。最后,总结词向量质量的评估方法,分析词嵌入方法的当前现状并对其未来发展方向进行展望。 展开更多
关键词 词向量 词嵌入方法 自然语言处理 语言模型 分词 词向量评估
下载PDF
Research on high-performance English translation based on topic model
2
作者 Yumin Shen Hongyu Guo 《Digital Communications and Networks》 SCIE CSCD 2023年第2期505-511,共7页
Retelling extraction is an important branch of Natural Language Processing(NLP),and high-quality retelling resources are very helpful to improve the performance of machine translation.However,traditional methods based... Retelling extraction is an important branch of Natural Language Processing(NLP),and high-quality retelling resources are very helpful to improve the performance of machine translation.However,traditional methods based on the bilingual parallel corpus often ignore the document background in the process of retelling acquisition and application.In order to solve this problem,we introduce topic model information into the translation mode and propose a topic-based statistical machine translation method to improve the translation performance.In this method,Probabilistic Latent Semantic Analysis(PLSA)is used to obtains the co-occurrence relationship between words and documents by the hybrid matrix decomposition.Then we design a decoder to simplify the decoding process.Experiments show that the proposed method can effectively improve the accuracy of translation. 展开更多
关键词 Machine translation Topic model Statistical machine translation Bilingual word vector RETELLING
下载PDF
Solving Arithmetic Word Problems of Entailing Deep Implicit Relations by Qualia Syntax-Semantic Model
3
作者 Hao Meng Xinguo Yu +3 位作者 Bin He Litian Huang Liang Xue Zongyou Qiu 《Computers, Materials & Continua》 SCIE EI 2023年第10期541-555,共15页
Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This pap... Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This paper proposes to discover deep implicit relations by qualia inference to solve Arithmetic Word Problems entailing Deep Implicit Relations(DIR-AWP),such as entailing commonsense or subject-domain knowledge involved in the problem-solving process.This paper proposes to take three steps to solve DIR-AWPs,in which the first three steps are used to conduct the qualia inference process.The first step uses the prepared set of qualia-quantity models to identify qualia scenes from the explicit relations extracted by the Syntax-Semantic(S2)method from the given problem.The second step adds missing entities and deep implicit relations in order using the identified qualia scenes and the qualia-quantity models,respectively.The third step distills the relations for solving the given problem by pruning the spare branches of the qualia dependency graph of all the acquired relations.The research contributes to the field by presenting a comprehensive approach combining explicit and implicit knowledge to enhance reasoning abilities.The experimental results on Math23K demonstrate hat the proposed algorithm is superior to the baseline algorithms in solving AWPs requiring deep implicit relations. 展开更多
关键词 Arithmetic word problem implicit quantity relations qualia syntax-semantic model
下载PDF
An Effective Machine-Learning Based Feature Extraction/Recognition Model for Fetal Heart Defect Detection from 2D Ultrasonic Imageries
4
作者 Bingzheng Wu Peizhong Liu +3 位作者 Huiling Wu Shunlan Liu Shaozheng He Guorong Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1069-1089,共21页
Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Car... Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease. 展开更多
关键词 Congenital heart defect fetal heart ultrasonic standard plane image recognition and classification machine learning bag of words model feature fusion
下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:2
5
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短时记忆网络 条件随机场
下载PDF
主题方面共享的领域主题层次模型
6
作者 万常选 张奕韬 +3 位作者 刘德喜 刘喜平 廖国琼 万齐智 《软件学报》 EI CSCD 北大核心 2024年第4期1790-1818,共29页
层次主题模型是构建主题层次的重要工具.现有的层次主题模型大多通过在主题模型中引入nCRP构造方法,为文档主题提供树形结构的先验分布,但无法生成具有明确领域涵义的主题层次结构,即领域主题层次.同时,领域主题不仅存在层次关系,而且... 层次主题模型是构建主题层次的重要工具.现有的层次主题模型大多通过在主题模型中引入nCRP构造方法,为文档主题提供树形结构的先验分布,但无法生成具有明确领域涵义的主题层次结构,即领域主题层次.同时,领域主题不仅存在层次关系,而且不同父主题下的子主题之间还存在子领域方面共享的关联关系,在现有主题关系研究中没有合适的模型来生成这种领域主题层次.为了从领域文本中自动、有效地挖掘出领域主题的层次关系和关联关系,在4个方面进行创新研究.首先,通过主题共享机制改进nCRP构造方法,提出nCRP+层次构造方法,为主题模型中的主题提供具有分层主题方面共享的树形先验分布;其次,结合nCRP+和HDP模型构建重分层的Dirichlet过程,提出rHDP(reallocated hierarchical Dirichlet processes)层次主题模型;第三,结合领域分类信息、词语语义和主题词的领域代表性,定义领域知识,包括基于投票机制的领域隶属度、词语与领域主题的语义相关度和层次化的主题-词语贡献度;最后,通过领域知识改进rHDP主题模型中领域主题和主题词的分配过程,提出结合领域知识的层次主题模型rHDP_DK(rHDP with domain knowledge),并改进采样过程.实验结果表明,基于nCRP+的层次主题模型在评价指标方面均优于基于nCRP的层次主题模型(hLDA,nHDP)和神经主题模型(TSNTM);通过rHDP_DK模型生成的主题层次结构具有领域主题层次清晰、关联子主题的主题词领域差异明确的特点.此外,该模型将为领域主题层次提供一个通用的自动挖掘框架. 展开更多
关键词 层次主题模型 领域分类信息 词语语义 主题关联关系 层次化的采样过程 领域主题层次
下载PDF
基于A-BiLSTM和CNN的文本分类
7
作者 黄远 戴晓红 +2 位作者 黄伟建 于钧豪 黄峥 《计算机工程与设计》 北大核心 2024年第5期1428-1434,共7页
为解决单一神经网络不能获取准确全局文本信息的问题,提出一种基于A-BiLSTM双通道和优化CNN的文本分类模型。A-BiLSTM双通道层使用注意力机制关注对文本分类贡献值较大的部分,并用BiLSTM提取文本中上下文语义信息;A-BiLSTM双通道层中将... 为解决单一神经网络不能获取准确全局文本信息的问题,提出一种基于A-BiLSTM双通道和优化CNN的文本分类模型。A-BiLSTM双通道层使用注意力机制关注对文本分类贡献值较大的部分,并用BiLSTM提取文本中上下文语义信息;A-BiLSTM双通道层中将两者输出的特征信息融合,得到高级语义;A-BiLSTM双通道层后,使用优化CNN的强学习能力提取关键局部特征,得到最终文本特征表示。分类器输出文本信息的类别。实验结果表明,该模型分类效果优于其它对比模型,具有良好的泛化能力。 展开更多
关键词 文本分类 深度学习 双通道网络 注意力机制 双向长短时记忆网络 卷积神经网络 词向量模型
下载PDF
基于复杂网络的在线口碑传播模型研究
8
作者 杜学美 荀伟 +1 位作者 谢志鸿 李美菱 《上海管理科学》 2024年第3期25-33,共9页
在线口碑已成为信息传播领域的核心力量,对其进行系统分析对于理解当代社交媒体环境中的消费者行为至关重要。论文引入了传播激活和接受激活的概念,基于病毒传播的SIR模型构建在线口碑传播模型,并运用复杂网络和系统仿真的方法模拟在线... 在线口碑已成为信息传播领域的核心力量,对其进行系统分析对于理解当代社交媒体环境中的消费者行为至关重要。论文引入了传播激活和接受激活的概念,基于病毒传播的SIR模型构建在线口碑传播模型,并运用复杂网络和系统仿真的方法模拟在线口碑传播过程,深入探讨了不同因素对在线口碑传播规模的影响,识别了在线口碑传播网络中各个节点的特征并分析了网络的结构特性。结果表明,不同因素对在线口碑传播规模的作用不同,且关键节点和免疫节点具有不同的属性特征。此外,研究还发现在线口碑传播网络具有小世界特性和无标度特性,该结论进一步丰富了在线口碑传播的理论框架,也为企业网络营销策略及产品质量追溯的优化等提供一定的应用参考。 展开更多
关键词 在线口碑 口碑传播模型 复杂网络 NETLOGO
下载PDF
文本相似度计算方法综述
9
作者 魏嵬 丁香香 +2 位作者 郭梦星 杨钊 刘辉 《计算机工程》 CAS CSCD 北大核心 2024年第9期18-32,共15页
文本相似度计算是自然语言处理的一部分,用来计算两个词、句子及文本之间的相似程度,具有多种应用场景,文本相似度计算的研究对于人工智能的发展有着重要作用。文本相似度计算起初基于字符串表面,随着词向量的提出,文本相似度计算可进... 文本相似度计算是自然语言处理的一部分,用来计算两个词、句子及文本之间的相似程度,具有多种应用场景,文本相似度计算的研究对于人工智能的发展有着重要作用。文本相似度计算起初基于字符串表面,随着词向量的提出,文本相似度计算可进行基于统计以及深度学习的建模与计算,也可与预训练模型相结合。首先,将文本相似度计算方法分为基于字符串、基于词向量、基于预训练模型、基于深度学习、其他方法5类,并对这些方法进行简要介绍。然后,根据不同文本相似度计算方法的原理,具体介绍了编辑距离、汉明距离、词袋模型、向量空间模型(VSM)、深度结构语义模型(DSSM)、句子嵌入的简单对比学习(SimCSE)等常见方法。最后,对文本相似度计算常用的数据集以及评价标准进行整理和分析,并对文本相似度计算的未来发展进行展望。 展开更多
关键词 文本相似度 字符串 词向量 预训练模型 深度学习
下载PDF
考虑网络口碑的供应链定价与协调研究
10
作者 张梦颖 汪传雷 刘兰凤 《中国商论》 2024年第9期98-102,共5页
随着电子商务和社交网络的迅速发展,网络口碑正在影响和改变消费者的购买习惯,并对企业决策产生重要影响。本文考虑由一个制造商和一个零售商组成的二级供应链,通过建立两阶段定价模型研究网络口碑对供应链定价和协调的影响。首先,文章... 随着电子商务和社交网络的迅速发展,网络口碑正在影响和改变消费者的购买习惯,并对企业决策产生重要影响。本文考虑由一个制造商和一个零售商组成的二级供应链,通过建立两阶段定价模型研究网络口碑对供应链定价和协调的影响。首先,文章分析了集中决策下网络口碑对供应链最优定价策略和整体利润的影响;其次,设计批发价契约和收益共享契约对分散决策下的供应链进行协调。研究表明:当受正面口碑影响时,系统会降低第一阶段价格,提高第二阶段价格,且口碑影响力度越大,两阶段的价格差异越小,供应链整体利润越高;当受负面口碑影响时,系统会提高第一阶段价格,降低第二阶段价格,且口碑影响力度越大,两阶段的价格差异越大,供应链整体利润越低;批发价契约无法实现供应链的协调,收益共享契约可以同时改善制造商、零售商和供应链整体利润,实现供应链协调。 展开更多
关键词 网络口碑 定价模型 供应链协调 批发价契约 收益共享契约
下载PDF
英语单词学习推荐模型在教学改革中的应用研究
11
作者 胡二娟 刘小强 《计算机应用文摘》 2024年第8期5-7,共3页
在人工智能技术的背景下,文章主要探讨了英语单词学习的推荐方法。其中,建立了1个基于人工智能的英语单词学习推荐模型,该模型利用用户的学习行为数据和单词特征进行训练,旨在为用户提供个性化的单词推荐。实验验证结果显示,相较于传统... 在人工智能技术的背景下,文章主要探讨了英语单词学习的推荐方法。其中,建立了1个基于人工智能的英语单词学习推荐模型,该模型利用用户的学习行为数据和单词特征进行训练,旨在为用户提供个性化的单词推荐。实验验证结果显示,相较于传统方法,该模型具有更高的准确性和可靠性,能够有效提升英语单词学习的效果。 展开更多
关键词 人工智能 英语单词 推荐模型 模型构建
下载PDF
基于对抗训练的事件要素识别方法
12
作者 廖涛 沈文龙 +1 位作者 张顺香 马文祥 《计算机工程与设计》 北大核心 2024年第2期540-545,共6页
针对目前大多数事件要素识别模型未考虑词级别的语义信息,及模型鲁棒性不高的问题,提出一种融合词信息和对抗训练的事件要素识别方法。将Bert(bidirectional encode representations from transformers)预训练语言模型生成的字向量与分... 针对目前大多数事件要素识别模型未考虑词级别的语义信息,及模型鲁棒性不高的问题,提出一种融合词信息和对抗训练的事件要素识别方法。将Bert(bidirectional encode representations from transformers)预训练语言模型生成的字向量与分词信息进行融合,在得到的融合向量中添加扰动因子产生对抗样本,将对抗样本与融合向量表示作为编码层的输入;采用BiGRU(bidirectional gating recurrent unit)网络对输入的文本进行编码,丰富文本的上下文语义信息;采用CRF(conditional random field)函数计算完成事件要素的识别任务。在CEC(Chinese emergency corpus)中文突发事件语料库上的实验结果表明,该方法能够取得较好的效果。 展开更多
关键词 事件要素识别 鲁棒性 词信息 对抗训练 预训练语言模型 扰动因子 上下文语义信息
下载PDF
基于提示学习的篇章级事件论元抽取方法研究
13
作者 薛继伟 胡馨元 薛鹏杰 《计算机技术与发展》 2024年第6期125-131,共7页
事件论元抽取是指在自然语言文本中识别出事件论元及其对应的角色,是事件抽取的关键。传统事件论元抽取方法将抽取范围局限在单个句子中,在面对长文本中论元分散的情况时表现不佳。近年来,有研究者提出基于提示学习的篇章级事件论元抽... 事件论元抽取是指在自然语言文本中识别出事件论元及其对应的角色,是事件抽取的关键。传统事件论元抽取方法将抽取范围局限在单个句子中,在面对长文本中论元分散的情况时表现不佳。近年来,有研究者提出基于提示学习的篇章级事件论元抽取方法,能根据提示信息在输入文本中获取事件论元,实现事件论元抽取。然而现有基于提示学习的方法大多是由人工手动构建提示模板,模板结构固定容易导致论元抽取错误。针对以上不足,该文在以往基于提示学习研究的基础上,提出以文本触发词为关键实现模板自动构建的方法,并在输入文本中融入事件角色语义信息,使模型能更好地捕获文本语义特征,提高事件论元抽取准确率。在篇章级数据集RAMS上的实验结果表明,该模型在事件论元识别和事件论元分类的F1值分别达到54.3%和48.1%,相比最优的基准方法分别提升了1.8百分点和1.2百分点,验证了模型的有效性。 展开更多
关键词 论元抽取 提示学习 触发词 跨度选择器 预训练语言模型
下载PDF
融合双通道的语义信息的方面级情感分析
14
作者 廖列法 张文豪 《计算机工程与设计》 北大核心 2024年第7期2228-2234,共7页
针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;... 针对方面级情感分析任务中语义信息难以提取以及方面词信息难以和上下文信息相关联的问题,提出一种融合双通道的语义信息模型(FDCS)。通过BERT预训练模型搭建两个通道获取不同层次的语义信息,一个是全局信息通道,另一个是句子信息通道;使用语义注意力融合双通道中不同层次的语义信息,将融合后的语义信息再次分别融入全局信息和句子信息;根据每个通道语义信息的不同分别提取相应的特征信息。在3个基准数据集上的实验结果表明,该模型的性能优于其它模型。 展开更多
关键词 方面级情感分析 方面词 预训练模型 双通道 语义信息 语义注意力 特征信息
下载PDF
高斯混合模型与文本图卷积网络结合的虚假评论识别算法
15
作者 王星 刘贵娟 陈志豪 《计算机应用》 CSCD 北大核心 2024年第2期360-368,共9页
针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评... 针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评论在训练数据上相对正常评论数不足的边信号强度;然后,考虑到信源的多样性,综合文档、词汇和评论以及非文本特征构造邻接矩阵;最后,通过Text GCN的谱分解提取邻接矩阵的虚假评论关联结构实施预测。根据国内某大型电商平台采集的126086条实际中文评论数据开展实证研究,实验结果表明,F-Text GCN识别虚假评论的F1值达到82.92%,与预训练表征模型BERT和文本卷积神经网络相比分别提升了10.46%和11.60%,相较于只使用评论文本信源的Text GCN模型F1值提升了2.94%;研究了高仿虚假评论的预测错误率,在支持向量机(SVM)作用后难识别的评论样本上尝试二次识别,F-Text GCN整体预测准确率可达94.71%,相较于Text GCN和SVM,在识别准确率上分别提升了2.91%和14.54%。研究发现,虚假评论的二阶图邻居结构显示出较强的干预消费者决策的词汇,这表明所提算法特别适用于提取用于虚假评论检测的长程词语搭配结构和全局句子特征模式变化的场景。 展开更多
关键词 高斯混合模型 虚假评论识别 文本图卷积神经网络 邻接矩阵 词汇共现网络
下载PDF
融合词信息和图注意力的医学命名实体识别 被引量:1
16
作者 赵珍珍 董彦如 +2 位作者 刘静 张俊忠 曹慧 《计算机工程与应用》 CSCD 北大核心 2024年第11期147-155,共9页
中文临床自然语言中富含大量的病历信息,对电子病历进行命名实体识别有助于建立医学辅助诊断系统,对医学领域的发展具有重要的意义,同时有利于下游任务如关系提取、建立知识图谱的实现。但中文电子病历存在中文分词困难、医学专业术语... 中文临床自然语言中富含大量的病历信息,对电子病历进行命名实体识别有助于建立医学辅助诊断系统,对医学领域的发展具有重要的意义,同时有利于下游任务如关系提取、建立知识图谱的实现。但中文电子病历存在中文分词困难、医学专业术语多、含有特殊表达方式的问题,易造成文本特征表达错误,于是提出基于增强词信息和图注意力的医学命名实体识别研究模型,通过增强局部特征和全局特征提高网络模型的性能。由于嵌入单一的字向量进行中文实体识别易忽略文本中词信息及语义,为此在字向量中嵌入与其高度关联的词向量,既增强文本表示,又避免分词错误的问题,并且在嵌入层中嵌入了学习医疗知识的MedBert模型,该模型能根据不同语境动态生成特征向量,有助于解决电子病历中一词多义及专业词汇的问题。同时,在编码层中添加图注意力模块增强模型学习文本上下文关系的能力和对医疗特殊语法的学习。在cEHRNER和cMedQANER数据集的实验上分别获得了86.38%和84.76%的F1值,与其他模型相比有较好的鲁棒性。 展开更多
关键词 图注意力 匹配词 命名实体识别 Bert模型
下载PDF
基于隐含空间模型降维和LDA模型的学科主题识别研究
17
作者 王婧 武帅 《情报探索》 2024年第2期1-11,共11页
【目的/意义】现有学科研究主题的梳理多为领域专家的定性分析和学科学者的文献梳理,一定程度会由于研究思维的局限性和获取知识的片面性造成学科研究主题误判,为有效避免漏判误判现象的发生,提出识别模型。【方法/过程】首先,运用传统... 【目的/意义】现有学科研究主题的梳理多为领域专家的定性分析和学科学者的文献梳理,一定程度会由于研究思维的局限性和获取知识的片面性造成学科研究主题误判,为有效避免漏判误判现象的发生,提出识别模型。【方法/过程】首先,运用传统LDA模型分析主题特征词;其次,结合上下文语义信息进行中文分词,形成学科主题词库;最后,结合隐含位置聚类算法发现潜在社区,提高主题识别效果。【结果/结论】提出的方法一定程度上优化了主题挖掘算法在识别短文本主题的效果,消除主观意愿。由计算机自行分类并实现科学研究前沿主题的预测,揭示前沿领域的研究热点,为致力于研究前沿学科的新兴学者提供参考价值。 展开更多
关键词 学科主题识别 LDA主题挖掘 图书情报与档案管理学科词库 隐含位置聚类模型 共词网络
下载PDF
基于POS-CBOW语言模型的相似词分析 被引量:3
18
作者 阮冬茹 潘洪岩 高凯 《河北科技大学学报》 CAS 2015年第5期532-538,共7页
相似词分析是自然语言处理领域的研究热点之一,在文本分类、机器翻译和信息推荐等领域中具有重要的研究价值和应用意义。针对新浪微博短文本的特点,给出一种带词性的连续词袋模型(POS-CBOW)。该模型在连续词袋模型的基础上加入过滤层和... 相似词分析是自然语言处理领域的研究热点之一,在文本分类、机器翻译和信息推荐等领域中具有重要的研究价值和应用意义。针对新浪微博短文本的特点,给出一种带词性的连续词袋模型(POS-CBOW)。该模型在连续词袋模型的基础上加入过滤层和词性标注层,对空间词向量进行优化和词性标注,通过空间词向量的余弦相似度和词性相似度来判别词向量的相似性,并利用统计分析模型筛选出最优相似词集合。实验表明,基于POS-CBOW语言模型的相似词分析算法优于传统CBOW语言模型。 展开更多
关键词 自然语言处理 语言模型 词向量 相似词 POS-cbow
下载PDF
基于图像Bag-of-Words模型的无载体信息隐藏 被引量:47
19
作者 周志立 曹燚 孙星明 《应用科学学报》 CAS CSCD 北大核心 2016年第5期527-536,共10页
介绍一种基于bag-of-words(BOW)模型的无载体信息隐藏方法.该方法使用BOW模型提取图像的视觉关键词(visual words,VW)以表达待隐藏的文本信息,从而实现文本信息在图像中的隐藏.首先使用BOW模型提取图像集中每幅图像的VW,构建文本信息的... 介绍一种基于bag-of-words(BOW)模型的无载体信息隐藏方法.该方法使用BOW模型提取图像的视觉关键词(visual words,VW)以表达待隐藏的文本信息,从而实现文本信息在图像中的隐藏.首先使用BOW模型提取图像集中每幅图像的VW,构建文本信息的关键词和VW的映射关系库;然后把每幅图像分为若干子图像,统计每一幅子图像的VW频数直方图,选择频数最高的VW表示该子图像;最后根据构建的文本关键词和子图像VW的映射关系库,搜索出与待隐藏文本信息存在映射关系的子图像序列,将含有这些子图像的图像作为含密图像进行传递.实验结果和分析表明,该隐藏算法在抗隐写分析、鲁棒性和安全性方面均有良好的表现. 展开更多
关键词 无载体信息隐藏 BAG of words模型 视觉词汇 图像搜索
下载PDF
基于Ghost-SE-Res2Net的多模型融合语音唤醒词检测方法 被引量:1
20
作者 虞秋辰 周若华 袁庆升 《计算机工程》 CAS CSCD 北大核心 2024年第3期52-59,共8页
语音唤醒词检测(WWD)是语音交互中的关键技术,选择合适大小的检测窗对WWD性能的影响很大。提出一种新的多模型融合方法,通过融合小检测窗和大检测窗的检测结果来提高WWD性能。多模型融合方法包含两个分类模型,分别使用小检测窗和大检测... 语音唤醒词检测(WWD)是语音交互中的关键技术,选择合适大小的检测窗对WWD性能的影响很大。提出一种新的多模型融合方法,通过融合小检测窗和大检测窗的检测结果来提高WWD性能。多模型融合方法包含两个分类模型,分别使用小检测窗和大检测窗,均基于轻量化的挤压与激励残差网络(SE-Res2Net)模块,即GhostSE-Res2Net,SE-Res2Net结构的多尺度机制可显著提升WWD的能力。在Ghost-SE-Res2Net中,首先使用Ghost卷积替换SE-Res2Net中的普通卷积以降低模型参数量,然后使用注意力池化层替换SE-Res2Net中的全局平均池化层进一步提升WWD能力。在实际检测时融合连续3个小检测窗模型的检测结果的最大值和1个大检测窗模型的检测结果,来判断唤醒词是否被触发。在训练时引入困难样本挖掘算法,选择性地学习较难检测的唤醒词信息以提高分类模型的检测性能。在包含2个唤醒词的Mobvoi数据集上评估系统性能,实验结果表明,在每小时0.5次错误唤醒的情况下,该系统在2个唤醒词上的错误拒绝率分别为0.46%和0.43%,实现了与先进基线相似的性能,并且系统参数量比基线少31%。 展开更多
关键词 唤醒词检测 Ghost模块 Res2Net结构 错误拒绝 多模型融合
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部