The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different ...The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.展开更多
The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Ra...The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.展开更多
Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization...Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization waste heat.In this work,the performance of the CACRC system was investigated using 16 refrigerants in the vapor compression section and H_(2)O-LiBr in the absorption refrigeration section.Energy,exergy and economic analysis of the CACRC system were carried out and the results were compared.Results show that RE170/H_(2)O-LiBr presents the better coefficient of performance and exergy efficiency amongst all the studied fluids.In addition,the economic optimization,multi-objective optimization,and thermodynamic optimization of the CACRC system based on the RE170/H_(2)O-LiBr working fluid were also carried out.展开更多
A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger an...A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids.展开更多
The main purpose of this study is to analyze the performance of a new system that combines organic Rankine Cycle(ORC) and vapor compression refrigeration cycle(VCRC) for refrigeration and cogeneration. This system use...The main purpose of this study is to analyze the performance of a new system that combines organic Rankine Cycle(ORC) and vapor compression refrigeration cycle(VCRC) for refrigeration and cogeneration. This system uses low-temperature heat sources such as solar energy, geothermal, industrial waste heat and biomass. The novelty of the proposed system manifests itself essentially in: the development of new ORC-VCRC combination architecture, lowering the ORC condensing temperature, the possibility of refrigeration production by the ORC upstream of the pumping phase, preheating of ORC using VCRC fluid and new configurations based on the integration of heat recovery systems to improve the overall system performance. The first part of this study presents the energetic analysis for the basic system using different working fluids and investigation of the operating parameters effect on the system performance(The system performance is described by the ORC thermal efficiency, the VCRC coefficient of performance and the system overall efficiency). Ten working fluids have been selected in order to provide the most adequate candidates for the proposed system. The results showed that the heating temperature and the cooling temperature have a significant effect on the system performance. The choice of fluid was also mentioned;the obtained results confirmed that the best combination for the basic system is R236fa-acetone. Four system configurations are developed and analyzed in the second part of the study. Also in the same part of the study, we will compare these configurations in terms of the performance rate retained. In the last part, we will make a comparison of this new system with another system.展开更多
In the current study, simulations based on the engineering equation solver (EES) software are performed to determine the suitable working fluid for the simple organic Rankine cYcle system in different temperature ra...In the current study, simulations based on the engineering equation solver (EES) software are performed to determine the suitable working fluid for the simple organic Rankine cYcle system in different temperature ranges. Under the condition of various temperatures and a constant thermal power of the flue gas, the influence of different organic working fluids on the efficiency of the subcritical organic Rankine cycle power generation system is studied, and its efficiency and other parameters are compared with those of the regenerator system. It is shown that the efficiency of the subcritical organic Rankine cycle system is the best when the parameters of the working fluid in the expander inlet are in the saturation state. And for the organic Rankine cycle, the R245fa is better than other working fluids and the efficiency of the system reaches up to 10.2% when the flammability, the toxicity, the ozone depletion, the greenhouse effect and other factors of the working fluids are considered. The R60 l a working fluid can be used for the high-temperature heat source, however, because of its high flammability, new working fluid should be investigated. Under the same condition, the efficiency of the organic Rankine cycle power generation system with an internal heat exchanger is higher than that of the simple system without the internal heat exchanger, but the efficiency is related to the properties of the working fluid and the temperature of the heat source.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va...For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.展开更多
To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net p...To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K.展开更多
Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters t...Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network.展开更多
With the increased use of natural gas,it is valuable to study energy recovery ratio in the natural gas pressure reduction stations(PRSs).This paper focused on recovering the energy in PRSs as well as low-grade waste h...With the increased use of natural gas,it is valuable to study energy recovery ratio in the natural gas pressure reduction stations(PRSs).This paper focused on recovering the energy in PRSs as well as low-grade waste heat by a coupled power generation system(CPGS).The CPGS integrates a natural gas expansion(NGE)subsystem and an organic Rankine cycle(ORC)subsystem driven by low-temperature waste heat.Firstly,a comparative analysis is carried out between the separated natural gas expansion system and the separated ORC system.Then,the effects of heat source conditions,upstream pressure of natural gas and the isentropic efficiency of the natural gas expander are investigated.At last,working fluids selection is conducted with respect to two different pressure ranges of natural gas.The results show that there is an optimal temperature and mass flow rate of the heat source that maximizes the system exergy efficiency.With the increase of the upstream pressure of natural gas,the net power output and waste heat recovery factor increase while the system exergy efficiency has an optimal point.Furthermore,the isentropic efficiency of the natural gas expander has a great influence on the net power output of the system.展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these ...A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight.展开更多
Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated...Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃.展开更多
The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, express...The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.展开更多
This paper presents an extensive study of the heat pump cycle and associated working fluids to generate electricity from low temperature industrial waste heat. An Aspen Plus simulation has been developed to evaluate t...This paper presents an extensive study of the heat pump cycle and associated working fluids to generate electricity from low temperature industrial waste heat. An Aspen Plus simulation has been developed to evaluate the effect of various working fluids on the net heat pump efficiency over a wide range of turbine inlet temperatures between 50℃ and 250℃. One hundred eight (108) refi'igerants were investigated from the environmental classifications of Hydrochlorofluorocarbons (HCFC), Hydrofluorocarbons (HFC), Chlorofluorocarbons (CFC) and Hydrocarbons (HC) with boiling points between -88.65 ℃ and 110.65℃. Net efficiency, which ranged from 0.1% to 25.8% in this work tends to increases with the temperature of the waste heat. Results of the present study demonstrate that working fluid R41 (with source temperature of 44 ℃) provides the maximum efficiency among those evaluated. Refrigerants R13B1 and R32 provide the best efficiency for waste heat source temperatures ranges 60 - 67 ℃ and 68 - 78℃ respectively. Ammonia shows the highest efficiency from 79℃ to 132 ℃. Refrigerants R31, R21, 17,30 and benzene perform well in the temperature ranges 133-151 ℃, 152-178 ℃, 179-236℃ and 237-250 ℃respectively. The optimal heat pump systems are applied to the hybrid copper sulfate-copper oxide thermochemical cycle for hydrogen production from water. 100.8 MW of electrical energy is produced, which increased the efficiency from 24.1% to 25.9%.展开更多
Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) op...Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium.展开更多
I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was ...I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was in cybernetics, resulting in the publication of the first Chinese paper concerning optimal control. After 1963, I worked on the theory of hydrodynamic stability. My explorative thrust is at the eigenvalues of the Orr Sommerfeld Equation,a non-self adjoint problem in展开更多
The basic organic Rankine cycle(BORC)and ORC with an internal heat exchanger(IHORC)are studied with different working fluids under a given heat source condition to analyse the thermodynamic performances and net power ...The basic organic Rankine cycle(BORC)and ORC with an internal heat exchanger(IHORC)are studied with different working fluids under a given heat source condition to analyse the thermodynamic performances and net power output.The results demonstrate that the external exergy efficiency of IHORC is lower than that of BORC while the internal exergy efficiency is on the opposite with the same overall exergy efficiencies.A multi-objective optimization model with inlet pressure and temperature of expander as independent parameters and exergy and heat recovery efficiencies as objective functions is solved by NSGA-II(the second non-dominated sorting genetic algorithm).The Pareto optimal solutions are obtained by the optimization models.By calculation with the optimum conditions,it is determined that R236ea has the best comprehensive performance with exergy efficiencies being 40.69%and 41.38%,and heat recovery efficiencies being 83.2%and 75.6%in IHORC and BORC,respectively.The evaporators occupy the maximum exergy destruction,which can be reduced by decreasing pinch point temperatures and increasing evaporation pressures.展开更多
Micro heat pipes(MHP) cooling is one of the most efficient solutions to radiate heat for high heat flux electronic components in data centers. It is necessary to improve heat transfer performance of microgroove back p...Micro heat pipes(MHP) cooling is one of the most efficient solutions to radiate heat for high heat flux electronic components in data centers. It is necessary to improve heat transfer performance of microgroove back plate heat pipes. This paper discusses about influence on thermal resistance through experiments and numerical simulation with different working fluids, filling ratio and heat power. Thermal resistance of the CO2 filled heat pipe is 14.8% lower than the acetone filled heat pipe. In the meantime, at the best filling ratio of 40%, the CO2 filled heat pipe has the optimal heat transfer behavior with the smallest thermal resistance of 0.123 K/W. The thermal resistance continues to decline but the magnitude of decreases is going to be minor. In addition, this paper illustrates methods about how to enhance heat pipe performance from working fluids, filling ratio and heat power, which provides a theoretical basis for practical applications.展开更多
基金Supported by the National Natural Science Foundation of China (51076021)
文摘The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.
基金Project(51778626) supported by the National Natural Science Foundation of China
文摘The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%-11.50%);the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0-24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.
基金supported by the National Natural Science Foundation of China(Grant No.:51936009).
文摘Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization waste heat.In this work,the performance of the CACRC system was investigated using 16 refrigerants in the vapor compression section and H_(2)O-LiBr in the absorption refrigeration section.Energy,exergy and economic analysis of the CACRC system were carried out and the results were compared.Results show that RE170/H_(2)O-LiBr presents the better coefficient of performance and exergy efficiency amongst all the studied fluids.In addition,the economic optimization,multi-objective optimization,and thermodynamic optimization of the CACRC system based on the RE170/H_(2)O-LiBr working fluid were also carried out.
基金supported by the National Natural Science Foundation of China (Grant No 50976079)
文摘A novel combined power and heat generation system was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The advantages of the novel combined power and heat generation system are free of using additional cooling water circling system for the power generation subsystem as well as maximizing the use of thermal energy in the low-temperature geothermal source. The main purpose is to identify suitable working fluids (wet, isentropic and dry flu-ids) which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Parameters under investigation were evaporating temperature, PPR value and QQR value. Results indicate that there exits an optimum evaporating temperature to maximize the PPR value and minimize the QQR value at the same time for individual fluid. And dry fluids show higher PPR values but lower QQR values. NH3 and R152a outstand among wet fluids. R134a out-stands among isentropic fluids. R236ea, R245ca, R245fa, R600 and R600a outstand among dry fluids. R236ea shows the highest PPR value among the recommended fluids.
文摘The main purpose of this study is to analyze the performance of a new system that combines organic Rankine Cycle(ORC) and vapor compression refrigeration cycle(VCRC) for refrigeration and cogeneration. This system uses low-temperature heat sources such as solar energy, geothermal, industrial waste heat and biomass. The novelty of the proposed system manifests itself essentially in: the development of new ORC-VCRC combination architecture, lowering the ORC condensing temperature, the possibility of refrigeration production by the ORC upstream of the pumping phase, preheating of ORC using VCRC fluid and new configurations based on the integration of heat recovery systems to improve the overall system performance. The first part of this study presents the energetic analysis for the basic system using different working fluids and investigation of the operating parameters effect on the system performance(The system performance is described by the ORC thermal efficiency, the VCRC coefficient of performance and the system overall efficiency). Ten working fluids have been selected in order to provide the most adequate candidates for the proposed system. The results showed that the heating temperature and the cooling temperature have a significant effect on the system performance. The choice of fluid was also mentioned;the obtained results confirmed that the best combination for the basic system is R236fa-acetone. Four system configurations are developed and analyzed in the second part of the study. Also in the same part of the study, we will compare these configurations in terms of the performance rate retained. In the last part, we will make a comparison of this new system with another system.
文摘In the current study, simulations based on the engineering equation solver (EES) software are performed to determine the suitable working fluid for the simple organic Rankine cYcle system in different temperature ranges. Under the condition of various temperatures and a constant thermal power of the flue gas, the influence of different organic working fluids on the efficiency of the subcritical organic Rankine cycle power generation system is studied, and its efficiency and other parameters are compared with those of the regenerator system. It is shown that the efficiency of the subcritical organic Rankine cycle system is the best when the parameters of the working fluid in the expander inlet are in the saturation state. And for the organic Rankine cycle, the R245fa is better than other working fluids and the efficiency of the system reaches up to 10.2% when the flammability, the toxicity, the ozone depletion, the greenhouse effect and other factors of the working fluids are considered. The R60 l a working fluid can be used for the high-temperature heat source, however, because of its high flammability, new working fluid should be investigated. Under the same condition, the efficiency of the organic Rankine cycle power generation system with an internal heat exchanger is higher than that of the simple system without the internal heat exchanger, but the efficiency is related to the properties of the working fluid and the temperature of the heat source.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金Project (2012AA053001) supported by High-tech Research and Development Program of China
文摘For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.
基金Projects(U0937604,50876116)supported by the National Natural Science Foundation of ChinaProjects(2010QZZD0107,2014zzts192)supported by the Fundamental Research Funds for the Central Universities of China
文摘To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K.
基金Lijun,You,Innovative Research Project for Sichuan Youth Scientific and Technological Innovation(Grants No.2016TD0016)Qiuyang Cheng,Postdoctoral Research Project of Petrochina Southwest Oil and Gas Field Company(Grants No.20230304-13).
文摘Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network.
基金Project(21506257)supported by the National Natural Science Foundation of ChinaProject(2019zzts535)supported by the Fundamental Research Funds for the Central Universities,China
文摘With the increased use of natural gas,it is valuable to study energy recovery ratio in the natural gas pressure reduction stations(PRSs).This paper focused on recovering the energy in PRSs as well as low-grade waste heat by a coupled power generation system(CPGS).The CPGS integrates a natural gas expansion(NGE)subsystem and an organic Rankine cycle(ORC)subsystem driven by low-temperature waste heat.Firstly,a comparative analysis is carried out between the separated natural gas expansion system and the separated ORC system.Then,the effects of heat source conditions,upstream pressure of natural gas and the isentropic efficiency of the natural gas expander are investigated.At last,working fluids selection is conducted with respect to two different pressure ranges of natural gas.The results show that there is an optimal temperature and mass flow rate of the heat source that maximizes the system exergy efficiency.With the increase of the upstream pressure of natural gas,the net power output and waste heat recovery factor increase while the system exergy efficiency has an optimal point.Furthermore,the isentropic efficiency of the natural gas expander has a great influence on the net power output of the system.
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.
基金funded by National Engineering Laboratory for Mobile Source Emission Control Technology of China[Grant No.NELMS2019A01]the Undergraduate School of Shandong University,China[Grant No.2022Y155].
文摘A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight.
文摘Now there were different aspects of heat exchangers of ejectors who could work in broad range of speed regulation characteristics, and with the different cores and auxiliary substance flows. For affirming of estimated performances the bench had been project, allowing to change speed regulation characteristics of a main stream and to regulate metering characteristics of an auxiliary fluid flow. For affirming of estimated performances of a heat exchanger of an ejector the imitative bench and with a view of accident prevention had been project, cooled air and the prepare water actuation mediums. The bench had been positioned in an insulated cooled room. For putting off gauging the multifunctional measuring complex of TESTO 400, was taken the temperature a surrounding medium, and a water rate does regulate by us. The high speed photo cameras were applied to bracing of formation of drips. Strain-gauge balances apply to determination of mass of water on the shield. The air flow was shape, and moving in an ejector heat exchanger by means of the axial multiple-speed fan. The purpose of projection of a heat interchanger of an ejector is maintaining of airspeeds by means of the ventilator in the mixing chamber 10 to 80 meters per second. The temperature of given air was a stationary value, equal to -20℃. Temperature of injection water was varying from 4 to 20℃.
文摘The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.
文摘This paper presents an extensive study of the heat pump cycle and associated working fluids to generate electricity from low temperature industrial waste heat. An Aspen Plus simulation has been developed to evaluate the effect of various working fluids on the net heat pump efficiency over a wide range of turbine inlet temperatures between 50℃ and 250℃. One hundred eight (108) refi'igerants were investigated from the environmental classifications of Hydrochlorofluorocarbons (HCFC), Hydrofluorocarbons (HFC), Chlorofluorocarbons (CFC) and Hydrocarbons (HC) with boiling points between -88.65 ℃ and 110.65℃. Net efficiency, which ranged from 0.1% to 25.8% in this work tends to increases with the temperature of the waste heat. Results of the present study demonstrate that working fluid R41 (with source temperature of 44 ℃) provides the maximum efficiency among those evaluated. Refrigerants R13B1 and R32 provide the best efficiency for waste heat source temperatures ranges 60 - 67 ℃ and 68 - 78℃ respectively. Ammonia shows the highest efficiency from 79℃ to 132 ℃. Refrigerants R31, R21, 17,30 and benzene perform well in the temperature ranges 133-151 ℃, 152-178 ℃, 179-236℃ and 237-250 ℃respectively. The optimal heat pump systems are applied to the hybrid copper sulfate-copper oxide thermochemical cycle for hydrogen production from water. 100.8 MW of electrical energy is produced, which increased the efficiency from 24.1% to 25.9%.
文摘Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium.
文摘I graduated from the National Peiyang University (now called Tianjin University) in 1950, majoring in hydraulic engineering. Starting from 1952, my teaching work was basically in mechanics.My first academic probe was in cybernetics, resulting in the publication of the first Chinese paper concerning optimal control. After 1963, I worked on the theory of hydrodynamic stability. My explorative thrust is at the eigenvalues of the Orr Sommerfeld Equation,a non-self adjoint problem in
基金supported by projects for International(regional)Cooperation and Exchange of the National Natural-Science Foundation of China(Grant No.41761144067)the National Natural Science Foundation of China(Grant No.51376110)。
文摘The basic organic Rankine cycle(BORC)and ORC with an internal heat exchanger(IHORC)are studied with different working fluids under a given heat source condition to analyse the thermodynamic performances and net power output.The results demonstrate that the external exergy efficiency of IHORC is lower than that of BORC while the internal exergy efficiency is on the opposite with the same overall exergy efficiencies.A multi-objective optimization model with inlet pressure and temperature of expander as independent parameters and exergy and heat recovery efficiencies as objective functions is solved by NSGA-II(the second non-dominated sorting genetic algorithm).The Pareto optimal solutions are obtained by the optimization models.By calculation with the optimum conditions,it is determined that R236ea has the best comprehensive performance with exergy efficiencies being 40.69%and 41.38%,and heat recovery efficiencies being 83.2%and 75.6%in IHORC and BORC,respectively.The evaporators occupy the maximum exergy destruction,which can be reduced by decreasing pinch point temperatures and increasing evaporation pressures.
基金financial support for this research through the Beijing Natural Science Foundation(No.8202034)the USTB-NTUT Joint Research Program.
文摘Micro heat pipes(MHP) cooling is one of the most efficient solutions to radiate heat for high heat flux electronic components in data centers. It is necessary to improve heat transfer performance of microgroove back plate heat pipes. This paper discusses about influence on thermal resistance through experiments and numerical simulation with different working fluids, filling ratio and heat power. Thermal resistance of the CO2 filled heat pipe is 14.8% lower than the acetone filled heat pipe. In the meantime, at the best filling ratio of 40%, the CO2 filled heat pipe has the optimal heat transfer behavior with the smallest thermal resistance of 0.123 K/W. The thermal resistance continues to decline but the magnitude of decreases is going to be minor. In addition, this paper illustrates methods about how to enhance heat pipe performance from working fluids, filling ratio and heat power, which provides a theoretical basis for practical applications.