高空间分辨率卫星影像的融合研究一直备受关注。本文以WorldView-2全色、多光谱影像为数据源,采用主成分分析、小波-主成分分析、高通滤波、HCS(Hypersherical color space)四种融合方法进行实验,并对融合效果做出定性及定量评价。研究...高空间分辨率卫星影像的融合研究一直备受关注。本文以WorldView-2全色、多光谱影像为数据源,采用主成分分析、小波-主成分分析、高通滤波、HCS(Hypersherical color space)四种融合方法进行实验,并对融合效果做出定性及定量评价。研究结果表明,HCS法不仅显著提高影像空间细节表现力,而且有效地保持多光谱影像的光谱信息,其融合影像质量最高。展开更多
利用多光谱遥感技术定量估算野鸭湖湿地挺水植物的含水量.基于典型挺水植物的实测冠层光谱及其对应样方的叶片含水量和叶面积指数LAI数据,首先对芦苇和香蒲的地面实测光谱进行重采样,以模拟WorldView-2影像的光谱,然后利用模拟光谱分别...利用多光谱遥感技术定量估算野鸭湖湿地挺水植物的含水量.基于典型挺水植物的实测冠层光谱及其对应样方的叶片含水量和叶面积指数LAI数据,首先对芦苇和香蒲的地面实测光谱进行重采样,以模拟WorldView-2影像的光谱,然后利用模拟光谱分别构建芦苇和香蒲任意两波段反射率组合而成的比值(SR)和归一化差值植被指数(NDVI),通过分析植被指数与CWC(冠层含水量,Canopy Water Content)的相关关系,选择与CWC显著相关的植被指数,并通过单变量线性与非线性拟合的分析方法确定监测不同挺水植物群落的最佳植被指数,建立估算模型;结合覆盖研究区的WorldView-2高分辨率多光谱影像,对研究区的挺水植物群落CWC进行反演及制图.结果表明,基于模拟WorldView-2影像光谱构建的比值(SR)和归一化差值植被指数(NDVI)与CWC的总体相关性较高;SR(8,3)芦苇为估算CWC芦苇的最优植被指数,估算模型为y=0.005x+0.003,NDVI(8,3)香蒲为估算CWC香蒲的最优植被指数,估算模型为y=2.461x2-0.313x+0.032,通过交叉检验,CWC芦苇和CWC香蒲的预测精度分别为87.42%和82.12%,预测精度较为理想;利用实测数据对反演的CWC空间分布图进行了验证,通过验证,芦苇和香蒲影像估算CWC的均方根差(RMSE)分别为0.0048和0.0052,估算精度分别为83.56%和80.31%,表明利用WorldView-2高分辨率多光谱影像反演湿地挺水植物群落CWC具有较高的可行性.展开更多
本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光...本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。展开更多
文摘高空间分辨率卫星影像的融合研究一直备受关注。本文以WorldView-2全色、多光谱影像为数据源,采用主成分分析、小波-主成分分析、高通滤波、HCS(Hypersherical color space)四种融合方法进行实验,并对融合效果做出定性及定量评价。研究结果表明,HCS法不仅显著提高影像空间细节表现力,而且有效地保持多光谱影像的光谱信息,其融合影像质量最高。
文摘利用多光谱遥感技术定量估算野鸭湖湿地挺水植物的含水量.基于典型挺水植物的实测冠层光谱及其对应样方的叶片含水量和叶面积指数LAI数据,首先对芦苇和香蒲的地面实测光谱进行重采样,以模拟WorldView-2影像的光谱,然后利用模拟光谱分别构建芦苇和香蒲任意两波段反射率组合而成的比值(SR)和归一化差值植被指数(NDVI),通过分析植被指数与CWC(冠层含水量,Canopy Water Content)的相关关系,选择与CWC显著相关的植被指数,并通过单变量线性与非线性拟合的分析方法确定监测不同挺水植物群落的最佳植被指数,建立估算模型;结合覆盖研究区的WorldView-2高分辨率多光谱影像,对研究区的挺水植物群落CWC进行反演及制图.结果表明,基于模拟WorldView-2影像光谱构建的比值(SR)和归一化差值植被指数(NDVI)与CWC的总体相关性较高;SR(8,3)芦苇为估算CWC芦苇的最优植被指数,估算模型为y=0.005x+0.003,NDVI(8,3)香蒲为估算CWC香蒲的最优植被指数,估算模型为y=2.461x2-0.313x+0.032,通过交叉检验,CWC芦苇和CWC香蒲的预测精度分别为87.42%和82.12%,预测精度较为理想;利用实测数据对反演的CWC空间分布图进行了验证,通过验证,芦苇和香蒲影像估算CWC的均方根差(RMSE)分别为0.0048和0.0052,估算精度分别为83.56%和80.31%,表明利用WorldView-2高分辨率多光谱影像反演湿地挺水植物群落CWC具有较高的可行性.
文摘本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。