We focus on the distribution and free energy of a wormlike polymer confined between two parallel hard walls.The variation in the distribution and free energy of the wormlike chain as the spacing between the walls decr...We focus on the distribution and free energy of a wormlike polymer confined between two parallel hard walls.The variation in the distribution and free energy of the wormlike chain as the spacing between the walls decreases(or as the total contour length of the wormlike chain increases or as the persistence length of the chain increases)is simulated.The main reason for these changes is a degradation of the long wormlike chain into a Gaussian long chain under weak confinement.展开更多
The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controlla...The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.展开更多
基金partly supported by the National Natural Science Foundation of China (Nos.11471046 and 11971002)
文摘We focus on the distribution and free energy of a wormlike polymer confined between two parallel hard walls.The variation in the distribution and free energy of the wormlike chain as the spacing between the walls decreases(or as the total contour length of the wormlike chain increases or as the persistence length of the chain increases)is simulated.The main reason for these changes is a degradation of the long wormlike chain into a Gaussian long chain under weak confinement.
基金supported by the National Natural Science Foundation of China (11032006, 11072094, and 11121202)the PhD Program Foundation of the Ministry of Education of China (20100211110022)+1 种基金New Century Excellent Talents in University (NCET-10-0445)supported by the National Science Foundation through grant CMMI-1028530 to Brown University
文摘The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.