期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Woronowicz C代数交叉积的正则与协变表示 被引量:1
1
作者 张小霞 郭懋正 《中国科学(A辑)》 CSCD 北大核心 2005年第9期982-996,共15页
A是Woronowicz C*代数,G是作用于其上的离散群,主要证明了它们的交叉积代数A×αG的正则表示和协变表示都对应于乘法酉算子,同时证明了正则协变的C*代数也是一个对应乘法酉算子的Woronowicz C*代数,最后给出了C(SUq(2)×αZ)对... A是Woronowicz C*代数,G是作用于其上的离散群,主要证明了它们的交叉积代数A×αG的正则表示和协变表示都对应于乘法酉算子,同时证明了正则协变的C*代数也是一个对应乘法酉算子的Woronowicz C*代数,最后给出了C(SUq(2)×αZ)对应的乘法酉算子的一个明确表示. 展开更多
关键词 乘法酉算子 woronowicz C^*代数 交叉积 正则表示 协变 离散群 积代数 证明
原文传递
The regular representation and regular covariant representation of crossed products of Woronowicz C^(*)-algebras 被引量:1
2
作者 ZHANG Xiaoxia~(1,2) & GUO Maozheng~(1,3) 1. School of Mathematical Sciences,Peking University,Beijing 100871,China 2. Department of Mathematics,Yantai University,Yantai 264005,China 3. LMAM,Peking University,Beijing 100871,China 《Science China Mathematics》 SCIE 2005年第9期1245-1259,共15页
In this paper,it is shown that the regular representation and regular covariant representation of the crossed products A×α G correspond to the twisted multiplicative unitary operators,where A is a Woronowicz C~*... In this paper,it is shown that the regular representation and regular covariant representation of the crossed products A×α G correspond to the twisted multiplicative unitary operators,where A is a Woronowicz C~*-algebra acted upon by a discrete group G.Meanwhile,it is also shown that the regular covariant C~*-algebra is the Woronowicz C~*-algebra which corresponds to a multiplicative unitary.Finally,an explicit description of the multiplicative unitary operator for C(SU_q(2) )×α (?) is given in terms of those of the Woronowicz C~*-algebra C(SU_q(2) ) and the discrete group G. 展开更多
关键词 MULTIPLICATIVE UNITARY operator woronowicz C*-algebra CROSSED product.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部