期刊文献+
共找到266,605篇文章
< 1 2 250 >
每页显示 20 50 100
Wu-Manber算法性能分析及其改进 被引量:13
1
作者 陈瑜 陈国龙 《计算机科学》 CSCD 北大核心 2006年第6期203-205,209,共4页
在模式匹配中,多模式匹配算法越来越受到人们的关注。本文首先介绍了一些著名的多模式匹配算法,重点介绍了Wu-Manber算法的基本概念及其实现原理,此算法在实践应用中是最有效的。然后提出了对Wu-Manber算法的改进,以解决多模式串长度很... 在模式匹配中,多模式匹配算法越来越受到人们的关注。本文首先介绍了一些著名的多模式匹配算法,重点介绍了Wu-Manber算法的基本概念及其实现原理,此算法在实践应用中是最有效的。然后提出了对Wu-Manber算法的改进,以解决多模式串长度很短时出现的性能问题。最后,实验数据表明,改进后的Wu-Manber算法,其性能远远优于传统的Wu-Manber算法。 展开更多
关键词 wu-manber算法 多模式匹配 性能分析
下载PDF
一种改进的Wu-Manber多模式串匹配算法 被引量:5
2
作者 马伟华 刘玉梅 +1 位作者 叶飞 杨旭东 《应用科技》 CAS 2007年第10期32-34,38,共4页
在分析Wu—Manber算法的基础上,结合QS算法思想,设计了一种改进的多模式串匹配算法:QWM(quick Wu—Manber).算法充分利用紧邻当前窗口之后的B字符块,使算法的最大移动距离由原来的(m—B+1)增大至(m+B),平均移动距离也得... 在分析Wu—Manber算法的基础上,结合QS算法思想,设计了一种改进的多模式串匹配算法:QWM(quick Wu—Manber).算法充分利用紧邻当前窗口之后的B字符块,使算法的最大移动距离由原来的(m—B+1)增大至(m+B),平均移动距离也得到很大提高.同时对QWM算法和Wu-Manber算法进行了实验对比,无论模式串数量和最小长度怎么变化,性能都有较大提升.实验表明,改进的算法在对英文文本进行扫描时有4%~13%的提高. 展开更多
关键词 多模式串匹配 字符串匹配 Wu—Manber算法
下载PDF
基于Wu-Manber的快速跳跃多模式匹配算法
3
作者 王艳秋 兰巨龙 《四川大学学报(工程科学版)》 CSCD 北大核心 2007年第S1期-,共6页
海量信息处理以及网络入侵检测等应用都对串匹配技术提出了新的挑战。在分析多模式匹配的Wu-Man- ber算法之后,提出一种基于WM的快速跳跃多模式匹配算法。该算法采用增大跳跃距离、减少冗余移动的方法,提高了WM算法的查找效率。试验数... 海量信息处理以及网络入侵检测等应用都对串匹配技术提出了新的挑战。在分析多模式匹配的Wu-Man- ber算法之后,提出一种基于WM的快速跳跃多模式匹配算法。该算法采用增大跳跃距离、减少冗余移动的方法,提高了WM算法的查找效率。试验数据表明该算法的查找时间比WM算法减少了5-9%。 展开更多
关键词 多模式串匹配 wu-manber算法 快速跳跃
下载PDF
Wu-Manber算法的改进研究
4
作者 王佳星 陈华辉 《移动通信》 2017年第10期63-69,共7页
Wu-Manber算法是一种经典的多模式字符串匹配算法,常用于解决网络入侵检测等问题。为了解决Wu-Manber算法在模式集规模增长时,prefix表中会出现过长的模式链表这一问题,通过改变原有prefix表中的链表结构以及存储信息的格式,提出两种改... Wu-Manber算法是一种经典的多模式字符串匹配算法,常用于解决网络入侵检测等问题。为了解决Wu-Manber算法在模式集规模增长时,prefix表中会出现过长的模式链表这一问题,通过改变原有prefix表中的链表结构以及存储信息的格式,提出两种改进算法,分别用于处理较小的模式集合和较大的模式集合。实验证实了改进算法可以提高字符串匹配速度,具有很高的实用价值。 展开更多
关键词 多模式匹配 wu-manber算法 哈希表 二叉树
下载PDF
一种改进的针对中文编码的Wu-Manber多模式匹配算法 被引量:4
5
作者 王一霈 石春 +1 位作者 戴上静 吴刚 《小型微型计算机系统》 CSCD 北大核心 2015年第4期778-781,共4页
Wu-Manber算法是多模式匹配领域性能优越的算法之一.针对Wu-Manber算法不能很好的用于中文环境,以及滑动距离受限和冗余匹配的问题,提出一种改进的针对中文编码的WM_CH多模式匹配算法.WM_CH针对中文编码修改了哈希函数,优化了建立哈希... Wu-Manber算法是多模式匹配领域性能优越的算法之一.针对Wu-Manber算法不能很好的用于中文环境,以及滑动距离受限和冗余匹配的问题,提出一种改进的针对中文编码的WM_CH多模式匹配算法.WM_CH针对中文编码修改了哈希函数,优化了建立哈希表的过程;修改并优化了算法匹配过程,在执行精确匹配时消除了冗余匹配,增大了单次精确匹配后的滑动距离.实际测试表明,该算法性能优异,保持与原算法匹配精确度一致,针对中文编码能快速过滤非中文字符.在特征串集规模大于50 000时,匹配速度比原算法提升40%以上,同时滑动窗口的跳转次数显著下降. 展开更多
关键词 多模式匹配算法 特征串 Wu—Manber算法 WM_CH算法
下载PDF
一种改进的Wu-Manber多关键字匹配算法 被引量:4
6
作者 莫德敏 刘耀军 《中文信息学报》 CSCD 北大核心 2009年第1期30-34,共5页
针对Wu-Manber算法在处理公共子后缀模式情况下的不足,该文提出了一种基于非空公共子后缀模式的处理算法。该算法把有非空公共子后缀的模式汇集在一起,进一步减小了next链表的平均长度。在匹配过程中减少了字符比较的次数,从而提高算法... 针对Wu-Manber算法在处理公共子后缀模式情况下的不足,该文提出了一种基于非空公共子后缀模式的处理算法。该算法把有非空公共子后缀的模式汇集在一起,进一步减小了next链表的平均长度。在匹配过程中减少了字符比较的次数,从而提高算法的运行效率。该文对搜狗实验室给出的相关文档进行全文检索实验,并和原Wu-Manber算法、孙晓山等提出的改进算法进行比较。实验结果表明,该文提出的改进算法有效地减少了匹配过程中字符比较的次数,从而提高匹配的速度和效率。 展开更多
关键词 计算机应用 中文信息处理 Wu—Manber算法 多关键字匹配 模式匹配 字符串匹配
下载PDF
Wu-Manber算法在大规模模式串下的改进 被引量:2
7
作者 莫德敏 刘耀军 《晋中学院学报》 2008年第3期86-90,共5页
对笔者在另一篇文章《一种改进的Wu-Manber多关键字匹配算法》中提出的算法进行了改进,把原算法中next链表中结点的Same-Subsuffix域中分裂成两个子域,使得搜索过程中字符比较的次数进一步减少,从而提高算法的效率.特别是在大规模模式... 对笔者在另一篇文章《一种改进的Wu-Manber多关键字匹配算法》中提出的算法进行了改进,把原算法中next链表中结点的Same-Subsuffix域中分裂成两个子域,使得搜索过程中字符比较的次数进一步减少,从而提高算法的效率.特别是在大规模模式串的情况下新算法的效率比原算法有进一步的提高.实验结果表明,当模式串较少时,新算法效率与原算法相比有一定的损失.而随着模式串的增加,新算法具有更高的效率.因此,新的算法比原算法具有更大的适用范围. 展开更多
关键词 Wu—Manber算法 多关键字匹配 模式匹配 字符串匹配 信息检索
下载PDF
基于Wu-Manber算法的大规模URL模式串匹配算法 被引量:2
8
作者 贾博威 吴志刚 张树壮 《智能计算机与应用》 2017年第5期4-9,共6页
大规模高速URL匹配是许多网络安全系统中的关键技术,经典串匹配算法在大规模URL情况下有许多限制。针对URL数据的特点在经典多模式串匹配算法Wu-Manber基础上提出XWM-Tree算法和XWM-Hash算法。算法应用了模式串窗口选择,两阶段哈希和关... 大规模高速URL匹配是许多网络安全系统中的关键技术,经典串匹配算法在大规模URL情况下有许多限制。针对URL数据的特点在经典多模式串匹配算法Wu-Manber基础上提出XWM-Tree算法和XWM-Hash算法。算法应用了模式串窗口选择,两阶段哈希和关联容器组织冲突链表等多种优化手段,大幅度提高了算法的匹配性能。在大规模真实数据集上的测试结果表明本文提出的算法匹配速度可以提高一倍以上,尤其是当最短模式串较长的时候更有优势。 展开更多
关键词 多模式串匹配 URL匹配 wu-manber算法
下载PDF
基于CUDA的Wu-Manber多模式匹配算法 被引量:1
9
作者 马计 王国平 杨明 《计算机系统应用》 2012年第3期51-54,175,共5页
多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹... 多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹配算法,实验结果表明,相比传统串行算法而言,本文的实现获得了10倍以上的加速。 展开更多
关键词 多模式匹配 GPU CUDA wu-manber
下载PDF
Wu-Manber算法的一种综合改进
10
作者 莫德敏 刘耀军 《太原师范学院学报(自然科学版)》 2008年第2期72-75,共4页
对孙晓山等提出的Wu-Manber算法的后缀改进算法作进一步的改进,在对next链表进行分类的同时把含有互为后缀的结点提到链表的前部,并整合了张鑫提出的精神的不良字符转移和弱化的良好后缀转移的改进方法,新改进的算法充分利用以上两种算... 对孙晓山等提出的Wu-Manber算法的后缀改进算法作进一步的改进,在对next链表进行分类的同时把含有互为后缀的结点提到链表的前部,并整合了张鑫提出的精神的不良字符转移和弱化的良好后缀转移的改进方法,新改进的算法充分利用以上两种算法的优点,使区配过程中字符比较好的次数得到了进一步减少.新改进的Wu-Manber匹配算法在实验中取得了更高的效率. 展开更多
关键词 wu-manber算法 多关键字匹配 模式匹配 字符串匹配 信息检索
下载PDF
改进的Wu-Manber多模式串匹配算法的设计与实现 被引量:1
11
作者 姚永安 《广东通信技术》 2017年第1期24-26,50,共4页
多模式串匹配算法作为入侵检测系统中的关键算法,针对Wu-Manber多模式串匹配算法效率低的问题,提出利用算法I_Sunday模式匹配的跳跃思想,对WuManber算法进行重新设计与实现。改进后的IS_WM算法最大移动距离由原来(mB+1)增大至(2m+B)。... 多模式串匹配算法作为入侵检测系统中的关键算法,针对Wu-Manber多模式串匹配算法效率低的问题,提出利用算法I_Sunday模式匹配的跳跃思想,对WuManber算法进行重新设计与实现。改进后的IS_WM算法最大移动距离由原来(mB+1)增大至(2m+B)。为验证IS_WM算法的性能,对Wu-Manber算法、QWM算法和IS_WM算法进行实验,在同等条件下,考察模式串规模及最短模式串长度对匹配窗口移动次数的影响。实验结果表明IS_WM算法能够跳过更多的坏块字符,大大减少了块字符匹配次数,从而缩短模式串匹配时间。 展开更多
关键词 wu-manber 算法 I_Sunday算法 IS_WM算法 入侵检测系统
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
12
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
一种改进的Wu-Manber多模式串匹配算法
13
作者 刘征宇 刘学生 《自动化应用》 2015年第5期5-8,共4页
针对Wu-Manber算法在模式串后缀与文本后缀相匹配的情况下,至少需要进行一次查找PREFIX表的比较操作的特点,提出一种改进的Wu-Manber算法,将PREFIX表信息合并到HASH表中,减少匹配过程中的查表比较次数,提高算法性能。
关键词 wu-manber算法 多模式串匹配 后缀信息 前缀信息
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
14
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
15
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
16
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
17
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
18
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
19
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
20
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部