In this study,we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy.Detailed structural characterizations suggest that wurtzite structured InAs nanosheets,with features of ...In this study,we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy.Detailed structural characterizations suggest that wurtzite structured InAs nanosheets,with features of extensive{1120}surfaces,grown along the<1102>direction and adopted{0001}nanosheet/catalyst interfaces,are initiated from wurtzite structured[0001]nanowires as the inclined epitaxial growth due to relatively higher In concentrations in Au catalysts,and grown from these inclined nanostructures through catalyst-induced axial growth and their enhanced lateral growth under the high growth temperature.Based on the facts that the nanosheets contain large low energy{1120}surfaces and{0001}nanosheet/catalyst interfaces,the growth of our nanosheets is a thermodynamically driven process.This study provides new insights into fabricating free-standing Ⅲ-Ⅴ nanosheets for their applications in future nanoscale devices.展开更多
A computer program has been developed for the moIlcular dynamics calculation of ionic orstrong-ionic covalent systems. Ewald summation algorithm and Keating potentiaI model areadopted to calculate the long-range Coulo...A computer program has been developed for the moIlcular dynamics calculation of ionic orstrong-ionic covalent systems. Ewald summation algorithm and Keating potentiaI model areadopted to calculate the long-range Coulomb interaction and the short-range bonding forces,respectively. A theoretical study on the domain boundary structures in epitaxial wurtzite GaN film is accomplished with the program. The calculation result is used in the structure formationexplanation of an interesting defect observed by HREM experiment.展开更多
ZnO thin films were deposited on n-Si (111) at various substrate temperatures by pulsed laser deposition (PLD). X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectrophotometer (F...ZnO thin films were deposited on n-Si (111) at various substrate temperatures by pulsed laser deposition (PLD). X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscopy (SEM) were used to analyze the structure, morphology, and optical property of the ZnO thin films. An optimal crystallized ZnO thin film was obtained at the substrate temperature of 600℃. A blue shift was found in PL spectra due to size confinement effect as the grain sizes decreased. The surfaces of the ZnO thin films were more planar and compact as the substrate temperature increased.展开更多
Large quantities of gallium nitride(GaN) nanowires have been prepared via ammoniating the Ga2O3 films deposited on the oxidized aluminum layer at 950 ℃ in a quartz tube. The nanowires have been confirmed as crystalli...Large quantities of gallium nitride(GaN) nanowires have been prepared via ammoniating the Ga2O3 films deposited on the oxidized aluminum layer at 950 ℃ in a quartz tube. The nanowires have been confirmed as crystalline wurtzite GaN by X-ray diffraction, X-ray photoelectron spectrometry scanning electron microscope and selected-area electron diffraction. Transmission electron microscope(TEM) and scanning electron microscopy(SEM) reveal that the nanowires are amorphous and irregular, with diameters ranging from 30 nm to 80 nm and lengths up to tens of microns. Selected-area electron diffraction indicates that the nanowire with the hexagonal wurtzite structure is the single crystalline. The growth mechanism is discussed briefly.展开更多
With Zinc acetate and sodium hydroxide as raw materials,while polyethylene glycol employed as dispersant agent, ultrafine zinc oxide powder was synthesized by hydrothermal method.Influence of NaOH concentration on mor...With Zinc acetate and sodium hydroxide as raw materials,while polyethylene glycol employed as dispersant agent, ultrafine zinc oxide powder was synthesized by hydrothermal method.Influence of NaOH concentration on morphology of ZnO powder was studied.The as-synthesized ZnO powder looked like flower cluster and consisted of microrods with hexagonal morphologies.The crystal structure and optical property of the as-prepared powder were also characterized using XRD,UV-visible absorption spectrum and photoluminescence spectrum.The results indicate that ZnO powder is of hexagonal wurtzite structure and well crystallized with high purity.There is a strong excitation absorption peak at 300 nm in UV-visible absorption spectrum and blue shift exists obviously.The optical property of ZnO powder is excellent.展开更多
By employing zinc acetate and sodium hydroxide as raw materials, ultrafine ZnO powders with different morphologies were successfully synthesized through hydrothermal method. The influences of the reaction temperature,...By employing zinc acetate and sodium hydroxide as raw materials, ultrafine ZnO powders with different morphologies were successfully synthesized through hydrothermal method. The influences of the reaction temperature, the OH-/Zn2+ mol ratio and the reaction time on the morphologies of the ZnO powders were discussed. The reaction conditions were obtained, under which the ZnO of flower-like particles, micro-rods and flake particles was synthesized, respectively. The crystal structures and morphologies of those ZnO particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ZnO with flower-like structures was composed of lots of micro-rods with hexagon morphology. The XRD patterns indicated that the ZnO powders were hexagonal wurtzite structures with high purity. Finally, the growth mechanism of the ZnO particles was discussed.展开更多
基金the Australian Research Council,the National Key R&D Program of China(No.2016YFB0402401)the National Natural Science Foundation of China(Nos.11634009 and 11774016)+1 种基金the Key Programs of Frontier Science of the Chinese Academy of Sciences(No.QYZDJ-SSW-JSC007)The Australian Microscopy&Microanalysis Research Facility is also gratefully acknowledged for providing microscopy facilities for this study.
文摘In this study,we report the growth of free-standing InAs nanosheets using Au catalysts in molecular beam epitaxy.Detailed structural characterizations suggest that wurtzite structured InAs nanosheets,with features of extensive{1120}surfaces,grown along the<1102>direction and adopted{0001}nanosheet/catalyst interfaces,are initiated from wurtzite structured[0001]nanowires as the inclined epitaxial growth due to relatively higher In concentrations in Au catalysts,and grown from these inclined nanostructures through catalyst-induced axial growth and their enhanced lateral growth under the high growth temperature.Based on the facts that the nanosheets contain large low energy{1120}surfaces and{0001}nanosheet/catalyst interfaces,the growth of our nanosheets is a thermodynamically driven process.This study provides new insights into fabricating free-standing Ⅲ-Ⅴ nanosheets for their applications in future nanoscale devices.
文摘A computer program has been developed for the moIlcular dynamics calculation of ionic orstrong-ionic covalent systems. Ewald summation algorithm and Keating potentiaI model areadopted to calculate the long-range Coulomb interaction and the short-range bonding forces,respectively. A theoretical study on the domain boundary structures in epitaxial wurtzite GaN film is accomplished with the program. The calculation result is used in the structure formationexplanation of an interesting defect observed by HREM experiment.
基金This work was financially supported by the Key Research Program of National Natural Science Foundation of China (No. 90301002 and No. 90201025)
文摘ZnO thin films were deposited on n-Si (111) at various substrate temperatures by pulsed laser deposition (PLD). X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscopy (SEM) were used to analyze the structure, morphology, and optical property of the ZnO thin films. An optimal crystallized ZnO thin film was obtained at the substrate temperature of 600℃. A blue shift was found in PL spectra due to size confinement effect as the grain sizes decreased. The surfaces of the ZnO thin films were more planar and compact as the substrate temperature increased.
基金National Natural Science Foundation of China(90301002and90201025)
文摘Large quantities of gallium nitride(GaN) nanowires have been prepared via ammoniating the Ga2O3 films deposited on the oxidized aluminum layer at 950 ℃ in a quartz tube. The nanowires have been confirmed as crystalline wurtzite GaN by X-ray diffraction, X-ray photoelectron spectrometry scanning electron microscope and selected-area electron diffraction. Transmission electron microscope(TEM) and scanning electron microscopy(SEM) reveal that the nanowires are amorphous and irregular, with diameters ranging from 30 nm to 80 nm and lengths up to tens of microns. Selected-area electron diffraction indicates that the nanowire with the hexagonal wurtzite structure is the single crystalline. The growth mechanism is discussed briefly.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘With Zinc acetate and sodium hydroxide as raw materials,while polyethylene glycol employed as dispersant agent, ultrafine zinc oxide powder was synthesized by hydrothermal method.Influence of NaOH concentration on morphology of ZnO powder was studied.The as-synthesized ZnO powder looked like flower cluster and consisted of microrods with hexagonal morphologies.The crystal structure and optical property of the as-prepared powder were also characterized using XRD,UV-visible absorption spectrum and photoluminescence spectrum.The results indicate that ZnO powder is of hexagonal wurtzite structure and well crystallized with high purity.There is a strong excitation absorption peak at 300 nm in UV-visible absorption spectrum and blue shift exists obviously.The optical property of ZnO powder is excellent.
基金supported by the National Natural Science Foundation of China (No. 51204054)the Fundamental Research Funds for the Central Universities, China (No.N110402012)
文摘By employing zinc acetate and sodium hydroxide as raw materials, ultrafine ZnO powders with different morphologies were successfully synthesized through hydrothermal method. The influences of the reaction temperature, the OH-/Zn2+ mol ratio and the reaction time on the morphologies of the ZnO powders were discussed. The reaction conditions were obtained, under which the ZnO of flower-like particles, micro-rods and flake particles was synthesized, respectively. The crystal structures and morphologies of those ZnO particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ZnO with flower-like structures was composed of lots of micro-rods with hexagon morphology. The XRD patterns indicated that the ZnO powders were hexagonal wurtzite structures with high purity. Finally, the growth mechanism of the ZnO particles was discussed.