An offline two-dimensional system combining a rat cardiac mascle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high performance liquid chromatography time-of-flight mass spectrome...An offline two-dimensional system combining a rat cardiac mascle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis of the analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc. ) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the system suggest that the CMC can be applied to in vivo study.展开更多
In the present study, an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-QTOF/MS) based chemical profiling approach to rapidly evaluate chemical diversity after co...In the present study, an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-QTOF/MS) based chemical profiling approach to rapidly evaluate chemical diversity after codecocting of the combination of Aconitum carmichaeli Debx.(wu-tou in Chinese, WT) and Bletilla striata(Thunb.) Reichb.f.(bai-ji in Chinese, BJ) incompatible pair. Two different kinds of decoctions, namely WT-BJ mixed decoction: mixed water extract of each individual herbs, and WT-BJ co-decoction: water extract of mixed two constituent herbs, were prepared. Batches of these two kinds of decoction samples were subjected to UPLC-QTOF/MS analysis, the datasets of tR-m/z pairs, ion intensities and sample codes were processed with supervised orthogonal partial least squared discriminant analysis(OPLS-DA) to holistically compare the difference between these two kinds of decoction samples. Once a clear classification trend was found in score plot, extended statistical analysis was performed to generate S-plot, in which the variables(tR-m/z pair) contributing most to the difference were clearly depicted as points at the two ends of "S", and the components that correlate to these ions were regarded as the most changed components during co-decocting of the incompatible pair. The identities of the changed components can be identified by comparing the retention times and mass spectra with those of reference compounds and/or tentatively assigned by matching empirical molecular formulae with those of the known compounds published in the literatures. Using the proposed approach, global chemical difference was found between mixed decoction and co-decoction, and hypaconitine, mesaconitine, deoxyaconitine, aconitine, 10-OH-mesaconitine, 10-OH-aconitine and deoxyhypaconitine were identified as the most changed toxic components of the combination of WT-BJ incompatible pair during co-decocting. It is suggested that this newly established approach could be used to practically reveal the possible toxic components changed/increased of the herbal combination taboos, e.g. the Eighteen Incompatible Medications(Shi Ba Fan), in traditional Chinese medicines.展开更多
基金supported by the National Natural Science Foundation of China(No.30873196)Project of Modernization of Traditional Chinese Medicine of Shanghai(No.09dZ1975100)
文摘An offline two-dimensional system combining a rat cardiac mascle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis of the analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc. ) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the system suggest that the CMC can be applied to in vivo study.
基金supported by the National Basic Research Program of China("973Program)(No2011CB505304)the Youth Scientific Research Project of Anhui Academy of Medical Science(YKY2018003)
文摘In the present study, an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-QTOF/MS) based chemical profiling approach to rapidly evaluate chemical diversity after codecocting of the combination of Aconitum carmichaeli Debx.(wu-tou in Chinese, WT) and Bletilla striata(Thunb.) Reichb.f.(bai-ji in Chinese, BJ) incompatible pair. Two different kinds of decoctions, namely WT-BJ mixed decoction: mixed water extract of each individual herbs, and WT-BJ co-decoction: water extract of mixed two constituent herbs, were prepared. Batches of these two kinds of decoction samples were subjected to UPLC-QTOF/MS analysis, the datasets of tR-m/z pairs, ion intensities and sample codes were processed with supervised orthogonal partial least squared discriminant analysis(OPLS-DA) to holistically compare the difference between these two kinds of decoction samples. Once a clear classification trend was found in score plot, extended statistical analysis was performed to generate S-plot, in which the variables(tR-m/z pair) contributing most to the difference were clearly depicted as points at the two ends of "S", and the components that correlate to these ions were regarded as the most changed components during co-decocting of the incompatible pair. The identities of the changed components can be identified by comparing the retention times and mass spectra with those of reference compounds and/or tentatively assigned by matching empirical molecular formulae with those of the known compounds published in the literatures. Using the proposed approach, global chemical difference was found between mixed decoction and co-decoction, and hypaconitine, mesaconitine, deoxyaconitine, aconitine, 10-OH-mesaconitine, 10-OH-aconitine and deoxyhypaconitine were identified as the most changed toxic components of the combination of WT-BJ incompatible pair during co-decocting. It is suggested that this newly established approach could be used to practically reveal the possible toxic components changed/increased of the herbal combination taboos, e.g. the Eighteen Incompatible Medications(Shi Ba Fan), in traditional Chinese medicines.