As the Armor shape has a significant effect on the reduction of wave overtopping, this study compares the performance of various shapes of concrete armored blocks of X block and Tetrapod as the most suitable armors. I...As the Armor shape has a significant effect on the reduction of wave overtopping, this study compares the performance of various shapes of concrete armored blocks of X block and Tetrapod as the most suitable armors. In this study, a three-dimensional numerical model was used for simulation of the effects of waves on the armors of Tetrapod and X Block breakwaters. In this regard, in order to calibrate the numerical model, a sample of conventional stone armor has been selected and using available experimental data on the design of armor such as wave overtopping, wave height, period of waves and energy density of the required spectral range of wave verification was conducted on a numerical model. In this regard, it is necessary to calibrate all the conditions of the model including boundary conditions, numerical modeling, initial conditions, numerical solvers and other parameters in the numerical model and simulation error rate is determined. The maximum error of the numerical model for the relative height values of the impact waves on the structure of breakwater is 7.87% for different conditions. Accordingly, the maximum error of the numerical model in determining overtopping values is 7.81%. The average fluctuation value of overtopping in the X block armor has dropped by about 31% compared to the tetrapod armor.展开更多
A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform...A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.展开更多
Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as inte...Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.展开更多
As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow...As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper.展开更多
文摘As the Armor shape has a significant effect on the reduction of wave overtopping, this study compares the performance of various shapes of concrete armored blocks of X block and Tetrapod as the most suitable armors. In this study, a three-dimensional numerical model was used for simulation of the effects of waves on the armors of Tetrapod and X Block breakwaters. In this regard, in order to calibrate the numerical model, a sample of conventional stone armor has been selected and using available experimental data on the design of armor such as wave overtopping, wave height, period of waves and energy density of the required spectral range of wave verification was conducted on a numerical model. In this regard, it is necessary to calibrate all the conditions of the model including boundary conditions, numerical modeling, initial conditions, numerical solvers and other parameters in the numerical model and simulation error rate is determined. The maximum error of the numerical model for the relative height values of the impact waves on the structure of breakwater is 7.87% for different conditions. Accordingly, the maximum error of the numerical model in determining overtopping values is 7.81%. The average fluctuation value of overtopping in the X block armor has dropped by about 31% compared to the tetrapod armor.
基金The National Natural Science Foundation of China under contract No.61601132
文摘A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA091701,2012AA091702)the National Natural Science Foundation of China(No.61401316)+1 种基金the PhD.Programs Foundation of Ministry of Education of China(No.20130141110053)the Fundamental Research Fund for the Central Universities of China(No.2014212020203)
文摘Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.
基金The National Key Research and Development Program of China under contract No.2016YFC0800405the Shanghai Municipal Science and Technology Project of China under contract No.15DZ0500600the Specialized Research Fund for the Doctoral Program of Higher Education of China under contract No.2014212020203
文摘As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper.