The broadband, narrow width, rectangular dielectric resonator antenna(RDRA) of aluminum nitride(εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna(DRA),above...The broadband, narrow width, rectangular dielectric resonator antenna(RDRA) of aluminum nitride(εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna(DRA),above the ground plane, was investigated. Gain around 7 dBi was obtained for DRA with air gap(DRAAG) over a broad bandwidth in upper X, Ku, and K bands. Further enhancement in gain could be obtained by placing a metal wall parallel to the length of DRA. However, due to the presence of metal wall, bandwidth was reduced. These structures with the metal wall are capable of operating over a wide band extending from Ku band to lower K band with the gain of around 10 dBi. CST Microwave Studio Software was used to simulate all these structures.Performance parameters of DRA with air gap were compared with several broadband DRA structures reported in recent literature. The proposed DRAAG with the metal wall in this paper is capable of operating over a wide bandwidth along with a significant gain.展开更多
文摘The broadband, narrow width, rectangular dielectric resonator antenna(RDRA) of aluminum nitride(εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna(DRA),above the ground plane, was investigated. Gain around 7 dBi was obtained for DRA with air gap(DRAAG) over a broad bandwidth in upper X, Ku, and K bands. Further enhancement in gain could be obtained by placing a metal wall parallel to the length of DRA. However, due to the presence of metal wall, bandwidth was reduced. These structures with the metal wall are capable of operating over a wide band extending from Ku band to lower K band with the gain of around 10 dBi. CST Microwave Studio Software was used to simulate all these structures.Performance parameters of DRA with air gap were compared with several broadband DRA structures reported in recent literature. The proposed DRAAG with the metal wall in this paper is capable of operating over a wide bandwidth along with a significant gain.